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Abstract

We give a simple interpretation and a simple implementation of the classical divide-and-
conquer algorithm for computing 3-d convex hulls (and in particular, 2-d Delaunay triangulations
and Voronoi diagrams). The entire C++ code is under 100 lines long, requires no special data
structures, and uses only 6n pointers for space.

1 Introduction

This article contains a complete 2-page C++ code that implements an optimal O(n logn) algorithm

for one of the core problems in computational geometry: the construction of the convex hull of

n points in 3-d. Applications for this problem are well-known and numerous. For example, we

mention intersections of halfspaces, shape analysis and bounding volumes in 3-d, as well as Delau-

nay triangulations and Voronoi diagrams in 2-d, the latter of which in turn have applications to

nearest/farthest neighbors, Euclidean minimum spanning trees, largest empty circles, etc. (see any

standard computational geometry textbook for more information [13, 16, 26, 27, 29]).

Disclaimer : The intended goal here is not the fastest code for the 3-d convex hull problem. Many

efficient, robust implementations are already available [1, 4, 19, 22, 33]. Our implementation in fact

ignores degenerate cases and robustness issues (to keep code simple) and is hardly of “professional

quality.”

Our challenge, however, is in finding the shortest program with a reasonable worst-case per-

formance. The motivation is pedagogical. Considering the fundamental nature of the convex hull

problem, it would be nice to have a complete solution (from scratch) that students can “see” and

understand. Simpler programs are easier to learn, adapt, and experiment with. For the 3-d convex

hull problem in particular, a self-contained implementation also has less overhead compared to the

use of existing code or library routines, due to the variety of output formats an application may desire

(a list of vertices, a graph formed by the edges, a planar subdivision under various representation

schemes, etc.)

∗This work was supported in part by an NSERC Research Grant.
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Revisiting known algorithms from the “minimalist” point of view can sometimes shed new light

on old problems (for example, as in Andersson’s work on balanced search trees [3]). For 3-d convex

hulls, we discover a different interpretation of the classic divide-and-conquer algorithm, showing that

it is not as difficult to implement as previously thought, even for the novice; the new description (see

Section 3) can be understood by non-geometers.

2 A commentary on known 3-d convex hull algorithms

We first give a quick survey on the existing options, to assess and compare their relative ease of

implementation. (Detailed explanations of these algorithms can be found in computational geometry

texts.)

Brute-force methods. It is actually easy to write a complete program to compute the 3-d convex

hull if the input is small (and non-degenerate). O’Rourke’s book [27] gave concise code by testing

each triple of points as a possible facet. The running time is O(n4); a slight variation improves this

to O(n3) by instead testing each pair of points as a possible edge. Our implementation is 26 lines

long.1

Gift-wrapping. The gift-wrapping algorithm [9, 29] computes the convex hull in O(nh) time by

generating facets one at a time via an implicit breadth- or depth-first search. Here and throughout,

h denotes the number of output facets. At first glance, the algorithm appears to require a queue

or stack for the graph search and a dictionary to prevent revisiting old facets. Actually, both data

structures can be avoided in the 3-d case, by using recursion for depth-first search and a linear scan

for checking duplicate facets (the cost is still O(n) per facet). Our implementation is 38 lines long

(again, assuming non-degeneracy).

Incremental methods. Incremental methods are conceptually simple and maintain the convex

hull as points are inserted one at a time. To insert a point outside the current hull, old “visible” facets

are identified and removed, and new facets (attached to the new point) are generated, by somehow

locating an initial new facet and subsequently performing breadth- or depth-first search. Despite

their O(n2) worst-case performance, incremental methods have gained popularity over the years, due

to the discovery by Clarkson and Shor [11, 13, 26] that an optimal O(n logn) expected running time

can be obtained by randomizing the order of insertion and maintaining a suitable pointer structure

as points are inserted.

Incremental methods are actually not as straightforward to implement as one might think. First,

the current hull needs to be stored in a planar subdivision structure to support the necessary graph

traversal and maintenance operations. Many such structures have been proposed in the litera-

ture (e.g., doubly-connected edge lists, the winged-edge or the quad-edge representation, as well as

triangle-based representations), but all require delicate manipulations of pointers and primitives.

Then there is the problem of finding the initial new facet at each iteration (a point location prob-

lem); this requires storing an additional “conflict graph” or “history dag,” if the optimal randomized

versions are adopted (although there are simpler suboptimal approaches [25]). See [10, 14, 22, 27]

for implementations.

1In this article, line counts include everything (e.g., I/O, declarations, etc.) but comments and blank lines. Source
code is available at http://www.cs.uwaterloo.ca/~tmchan/.
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Sweeping. Fortune [19, 13] gave a nice O(n logn) algorithm for computing 2-d Voronoi diagrams,

based on a process that can viewed as tracking a 1-d parabolic front moving from left to right.

This “sweep-line” algorithm requires a priority queue and a balanced search tree to ensure optimal

worst-case performance (though Fortune’s original implementation opted for a hash table instead of

a search tree). Assuming the availability of these data structures, the algorithm is not hard to code

up; in particular, a planar subdivision structure is not necessary. Unfortunately, the algorithm does

not generalize to compute arbitrary 3-d convex hulls.

Divide-and-conquer. The divide-and-conquer method, proposed by Shamos and Hoey [32] for

2-d Voronoi diagrams and Preparata and Hong [28] for 3-d convex hulls, was the earliest algorithm

to achieve O(n logn) running time. The algorithm resembles mergesort: divide the point set into

two halves by a vertical plane, recursively compute the hull of each half, and merge the two hulls

into one. To merge, new “bridge” facets along the dividing vertical plane are generated by a graph

search, and old facets underneath are removed.

O’Rourke [27] commented in his popular book: “this algorithm is both theoretically important,

and quite beautiful. It is, however, rather difficult to implement and seems not used as frequently

in practice as other asymptotically slower algorithms. . . ” (For these reasons, O’Rourke decided to

illustrate instead the implementation of the incremental algorithm in his book; similarly, Fortune’s

survey [20] chose not to detail the divide-and-conquer algorithm for Voronoi diagrams.)

The divide-and-conquer algorithm has been somewhat overshadowed by Fortune’s and Clarkson

and Shor’s discoveries. Indeed, its implementation appears to require not only a planar subdivision

structure capable of the necessary stitching operations, but also the handling of some very tricky

details for the bridge computation. Part of the blame is perhaps of a historical nature: the original

presentations in both the Shamos–Hoey and Preparata–Hong paper were sketchy and did not address

all the subtleties (O’Rourke [27] mentioned some potential problems). Lee and Schachter [24] gave

a more detailed account of the divide-and-conquer algorithm for 2-d Voronoi diagrams. The first

full description for 3-d convex hulls appeared in Edelsbrunner’s book [16] and was 15 pages long.

Day [12] described an implementation that was even lengthier (and worse, his code didn’t appear

to guarantee O(n logn) running time). An elegant implementation was finally given by Guibas and

Stolfi [22], who demonstrated that much terser code is possible, if done carefully. A proper choice

of planar subdivision structure is still a prerequisite, and in fact, a large part of Guibas and Stolfi’s

paper was devoted to the development of their quad-edge representation scheme. Another thorough

implementation was done by Shewchuk [33], using a triangle-based representation scheme.

Although the divide-and-conquer algorithm is perceived as complicated, it is not only the sole

deterministic optimal 3-d convex hull algorithm known in theory, but also the fastest in practice, ac-

cording to experimental studies by Shewchuk [33] (see also [36]), especially if a variation by Dwyer [15]

is adopted. From a robustness standpoint, the algorithm uses algebraic predicates of the lowest de-

gree, in contrast to Fortune’s algorithm, for example. (From an academic standpoint, it is also one

of the best illustrations of the power of the divide-and-conquer paradigm, in the author’s opinion.)

Other algorithms. In the literature, one can also find output-sensitive O(n log2 h) algorithms [8,

18], optimal O(n log h) algorithms [7, 11], and parallel algorithms [2] for 3-d convex hulls, some using

more sophisticated forms of divide-and-conquer. We omit their discussion, as these algorithms are

more complicated to implement.
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3 A new description of the divide-and-conquer algorithm

In this section, we present a new explanation of the 3-d divide-and-conquer algorithm that makes its

details more transparent and intuitive. Except for the remarks at the end, our presentation is meant

to be self-contained and accessible to readers with no background in 3-d computational geometry

(just familiarity with 2-d convex hulls).

Viewing as a kinetic 2-d problem. We begin with the problem statement and basic observations

(which one can take as definitions). The input is a 3-d point set P = {p1, . . . , pn}, where pi =

(xi, yi, zi). For simplicity, we assume that the points are non-degenerate, e.g., no four points lie on

a common plane, and no three points lie on a common vertical plane.

The output is the convex hull of P , a convex polytope made out of vertices (0-faces), edges (1-

faces), and facets (2-faces), defined as follows. A j-face of the lower hull is a tuple of j +1 points in

P that lie on some plane z = sx + ty + b such that all other points in P lie above the plane. Faces

of the upper hull are similarly defined. The faces of the convex hull are the faces of the upper and

lower hull combined. By symmetry, it suffices to describe an algorithm for the lower hull.

Since it is easier to visualize in 2-d than in 3-d, we avoid dealing with a 3-d object by taking (an

infinite number of) projections in 2-d. For each point pi, define

p̂i(t) = (xi, zi − tyi).

Let P̂ (t) = {p̂1(t), . . . , p̂n(t)}. By a change of variable y′ = z − ty, a point pi is a vertex of the lower

hull of P iff for some t, p̂i(t) lies on some line y′ = sx + b while all other p̂`(t)’s lie above the line,

i.e., iff p̂i(t) is a vertex of the lower hull of the 2-d point set P (t) for some t. Similarly, pipj is an

edge of the lower hull of P iff p̂i(t)p̂j(t) is an edge of the lower hull of P̂ (t) for some t. Therefore,

our problem is reduced to the maintenance of the lower hull of P̂ (t) as time t goes from −∞ to ∞.

In other words, we want to make a movie of a kinetic 2-d lower hull, as input points move vertically

(at different but fixed speeds) in the plane. This is the setting in which we will study the problem;

from now on, we can forget about (most of the) 3-d terminologies from the previous paragraph.

How is the movie represented? As points move, the kinetic 2-d lower hull gains and loses vertices.

In an insertion event, a new vertex p̂j just appears between p̂i and p̂k on the 2-d hull, creating two

new edges p̂ip̂j , p̂j p̂k and destroying the old edge p̂ip̂k. In a deletion event, a vertex p̂j disappears

from the 2-d hull, destroying two edges p̂ip̂j , p̂j p̂k and creating a new edge p̂ip̂k. (In either case, the

triple pipjpk makes a facet of the 3-d lower hull.) Each point is inserted at most once and deleted at

most once, so the total number of events (and thus facets) is at most 2n. The desired movie can be

specified by the sequence of events, sorted in time, along with the initial hull at t = −∞.

Applying divide-and-conquer. Sort the points p̂1, . . . , p̂n in increasing x-coordinates (recalling

that points only move vertically). We use divide-and-conquer to solve the kinetic 2-d problem.

Recursively create a movie for the lower hull L of p̂1, . . . , p̂bn/2c and a movie for the lower hull R of

p̂bn/2c+1, . . . , p̂n. We will create a movie for the lower hull A of all points p̂1, . . . , p̂n by a merging

process.

The initial hull A can be computed from the initial hulls L and R by identifying the common

tangent uv, called the bridge, and removing the part of L to the right of u and the part of R to

the left of v. (See Figure 1.) The initial bridge uv can be found in O(n) time by a simple iterative

algorithm that starts with u = p̂bn/2c and v = p̂bn/2c+1 and repeatedly advances u leftward on L and
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Figure 1: Merging two 2-d lower hulls.

v rightward on R, until u−uv and uvv+ both form counterclockwise turns. The notation w− (resp.

w+) represents the vertex immediately to the left (resp. right) of w on either the hull L or the hull

R.

As time progresses, we keep track of the current hulls L and R and the current bridge uv. The

movies for L and R tell us when and how L and R change:

• If L undergoes an insertion or deletion of a vertex w, then A undergoes the same event provided

that w is to the left of u.

• If R undergoes an insertion or deletion of a vertex w, then B undergoes the same event provided

that w is to the right of v.

The pair uv remains a bridge as long as u−uv and uvv+ are counterclockwise turns and uu+v and

uv−v are clockwise turns.

• When u−uv turns clockwise, u−v becomes the new bridge. Then A undergoes deletion of u

(between u− and v).

• When uu+v turns counterclockwise, u+v becomes the new bridge. Then A undergoes insertion

of u+ between u and v.

• When uvv+ turns clockwise, uv+ becomes the new bridge. Then A undergoes deletion of v

(between u and v+).

• When uv−v turns counterclockwise, uv− becomes the new bridge. Then A undergoes insertion

of v− between u and v.

To determine which of the above six possibilities should be executed next, we compute the six

time values at which they occur and take the minimum. Continuing until there are no changes, we

obtain the entire event sequence for the hull A. The description of the algorithm is complete and its

correctness is self-evident.

The running time satisfies the standard mergesort recurrence:

T (n) =

{

O(1) if n = 1

T (bn/2c) + T (dn/2e) + O(n) if n > 1.

We conclude that the algorithm runs in optimal O(n logn) time.
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Remarks. The Delaunay triangulation of a 2-d point set (and by duality, the Voronoi diagram) [13,

16, 29] can now be computed by setting zi = x2
i + y2

i .

The kinetic approach was popularized by Basch et al. [5]. Their first paper actually contained a

discussion on how to maintain the 2-d convex hull for points moving in arbitrary directions (rather

than vertically). This is a more general problem and requires near-quadratic number of events in

the worst case.

The kinetic approach is related to the classical idea of a plane/space sweep. In fact, when

translated to dual space [13, 16, 29] (in terms of the 3-d halfspace intersection problem or the 2-d

Voronoi diagram problem), the time parameter corresponds precisely to one of the coordinates. So,

our merging algorithm can indeed be thought of as a space sweep. The order of the sweep is different

from Fortune’s algorithm for Voronoi diagrams [19] but is identical to Seidel’s shelling method for

higher-dimensional convex hulls [31] (once dualized). Seidel’s method performs only one pass to

compute the entire hull (ours performs recursion), but uses a priority queue (ours avoids an explicit

heap because of the recursion) and, more importantly, needs an initial O(n2) preprocessing to predict

the insertion time of each vertex.

Compared to the original 3-d divide-and-conquer algorithm, the main difference that allows us

to bypass planar subdivision structures is that we keep the facets (i.e., events) ordered by their time

values.

More remarks, on querying. The divide-and-conquer algorithm is particularly suitable for an-

swering 3-d extreme point queries (a dual point location problem [16, 29, 35]): given values s and t,

find a point (xi, yi, zi) minimizing zi − sxi − tyi. Such queries can be used to find nearest neighbors

in 2-d: given a point (a, b), minimizing the Euclidean distance
√

(xi − a)2 + (yi − b)2 is equivalent

to minimizing zi − 2axi − 2byi with zi = x2
i + y2

i .

We can answer such a query by “remembering” what the 2-d hull A looks like at time t and

performing a 2-d extreme point query. By comparing s with the slope of the bridge uv, we can

decide which side L or R to search. The approach leads to an O(logn) query time if appropriate

pointers are kept between the event sequence of A and the event sequences of L and R; the data

structure uses O(n logn) space.

This is analogous to the layered version of Lee and Preparata’s chain method of point location [23]

(as the bridges form a monotone chain in the dual plane), but we have managed to obtain a point-

location data structure directly while the hull is being constructed. Guibas, Knuth, and Stolfi [21],

for example, were interested in obtaining a data structure for 2-d nearest neighbor queries without

the application of two separate methods, one for Voronoi diagram construction and one for point

location; their randomized incremental approach gave an O(n)-size structure that guaranteed an

O(log2 n) expected query time only.

Remembering the past is another classical idea, called persistence. In fact, our version of the

divide-and-conquer algorithm combines nicely with Sarnak and Tarjan’s method of point location

using persistent search trees [30]. This method achieves optimal O(n) space and O(logn) query time,

and requires the extraction of the sequence of changes to a list formed by moving a sweep line across

the (dual) planar subdivision, but the output of our convex hull algorithm gives us precisely this

sequence (in contrast, Fortune’s sweep is done in a different order, so a separate sorting step is still

required if Sarnak and Tarjan’s method is to be used).
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4 A minimalist’s implementation

The algorithm description in the previous section is simple yet detailed enough that a competent

programmer should be able to implement it without too much effort (we invite the “do-it-yourselfers”

to try their own version). For example, event sequences can be stored in arrays, and the current

hulls L and R can be stored as doubly linked lists. There is no need to learn a planar-subdivision

representation scheme.

In this section, we comment on one particular implementation, given in the appendix, that aims

at saving space (and is thus not the most straightforward version possible). This version requires

only 6n pointers for working storage in addition to an array holding the input coordinates; the

output is not stored explicitly. The amount is small, considering that an explicit array of facets or

an array of edges would require 6n pointers already (recall that in the worst case there are about

3n facets and 2n edges). A quad-edge data structure, used in Guibas and Stolfi’s implementation

of the divide-and-conquer algorithm [22], would require 15n pointers (an edge points to 4 adjacent

edges and an incident vertex); on the other hand, Shewchuk’s triangle-based approach boasted an

improvement to 12n pointers (a triangle points to 3 adjacent triangles and 3 incident vertices).

A guided tour of the code. Our 2-page implementation is completely self-contained. We even in-

clude code for sorting; appropriately, we choose mergesort (lines 40–53), and to avoid data movement

and extra space, we choose a version that returns a linked list (using the next field).

The algebraic primitives (lines 30–38) are simple (testing whether three points form a clock-

wise turn at t = −∞, and determining the time when three points switch from a clockwise to a

counterclockwise turn or vice versa).

In the main recursive procedure hull(list, n, A, B), the input is a sorted list of points list

and the number of points n. The output is an array of ≤ 2n events stored in A; the array B, also of

size ≤ 2n, is used as temporary storage. The initial hull at t = −∞ is stored from left to right as a

doubly linked list using the prev and next fields.

To specify an insertion event fully, we appear to need a record of three points, to tell which pair

of vertices p̂i and p̂k the new vertex p̂j is inserted between. In our space-economical version, we

decide to store just p̂j in the event array A; but we will use the prev and next fields of p̂j to point

to p̂i and p̂k (since p̂j is not in the initial hull, the fields have not been used). For a deletion event

for vertex p̂j , we again store only p̂j in the event array (as it turns out, an extra bit to differentiate

insertions from deletions is unnecessary). As a result, the event array A is just an array of ≤ 2n

points, representing the order in which points are inserted and/or deleted.

Using this compact storage scheme, pointer manipulations actually get easier. The base case

(line 61) is trivial (unlike in Guibas and Stolfi’s or Shewchuk’s implementation). The two recursive

calls are made in lines 63–66. The bridge at t = −∞ is found in lines 68–71. In the main loop

(lines 74–92), time t progresses and we maintain doubly linked lists for the two hulls L and R using

the prev and next fields. At the same time, we track the bridge uv and generate the output event

array A.

One problem arises with this compact scheme. During an insertion event, although we know

which pair of vertices p̂i and p̂k a vertex p̂j is inserted between, we cannot store p̂i and p̂k in the

prev and next fields yet, because they are still in use in the linked list for L or R. This problem

can be fixed by performing a second pass (lines 95–104), where time t goes backwards and the role

of insertions and deletions is reversed. Here, we use the prev and next fields to maintain the doubly

linked list for the output hull A. At the same time, we track the bridge uv. At the end, the prev and
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next fields will store the positions where a vertex is last seen, i.e., inserted, if it leaves the list, and

the list itself will store the surviving hull, i.e., the hull at t = −∞. The desired output requirement

is thus fulfilled. (If space is not crucial, this second pass can be eliminated by a more straightforward

implementation.)

This version of the code prints the facets of the 3-d lower hull (lines 119–120). This is done by

processing the events in the output array A and tracking the linked list for the 2-d hull using the

same prev and next fields. The code can be modified to print the vertices and/or edges of the 3-d

lower hull by a similar process. For example, we can do the following to print each edge exactly once:

for (u = list; u->next != NIL; u = u->next)

cout << u-P << " " << u->next-P << "\n";

for (i = 0; A[i] != NIL; A[i++]->act())

if (A[i]->prev->next != A[i]) { // insertion event

cout << A[i]->prev-P << " " << A[i]-P << "\n";

cout << A[i]-P << " " << A[i]->next-P << "\n";

}

else cout << A[i]->prev-P << " " << A[i]->next-P << "\n"; // deletion event

Remarks. Excluding blank lines and comments, the code is 91 lines long and is significantly shorter

than all implementations [1, 4, 10, 19, 22, 33] that we are aware of for 3-d convex hulls and 2-d Voronoi

diagrams with comparable performance. To be fair, these implementations are designed not with

the same “educational” purpose in mind, and neither for minimizing line counts.

Since our goal is not in optimizing speed, we will skip a full report on runtimes. We did test

the program to compute 2-d Voronoi diagrams for 100,000 points uniformly distributed on the unit

square; its output matched with the output of other programs, and it ran in under 20 seconds on a

Sun Ultra 10.

There are some obvious ways to optimize the program at the expense of increasing its length; for

example, in the main loop (lines 75–92), we can avoid computing all 6 time values at each iteration,

because some have already been computed in the previous iteration. We don’t believe, though, that

our program could be made faster than Guibas and Stolfi’s or Shewchuk’s implementation in practice,

for the following reason. In the original divide-and-conquer algorithm using planar subdivisions, the

merging process requires only the examination of facets near the bridge, whereas in our version, the

merging process must go through all facets of the left and right hull.

There are more degenerate cases in our version of the divide-and-conquer algorithm: two facets

with the same time values can cause potential problems. We don’t see an easy way to resolve

these problems other than to apply a general perturbation scheme (such as [17]). For a robust

implementation using exact arithmetic, and perhaps adaptive filters (e.g., see [34]), we have to deal

with a more involved algebraic primitive, the comparison of time values. The degree of this primitive

is higher than the degree in the original divide-and-conquer algorithm (4 instead of 3 for 3-d convex

hulls, and 6 instead of 4 for 2-d Voronoi diagrams), but lower than in Fortune’s sweep algorithm.

In terms of space, we can actually get by with 5n pointers under the same setup: in the final

merge, don’t store the output event array but print the answer instead (the code becomes longer,

however).
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5 Conclusions

By transforming a 3-d problem into a kinetic 2-d problem, we have given a more accessible descrip-

tion of the 3-d divide-and-conquer convex hull algorithm. This simpler description enables a short

implementation that uses no special data structures other than arrays and linked lists.

It would be interesting to see minimalistic implementations for other basic problems in compu-

tational geometry. For 3-d convex hulls, it would be intriguing to find algorithms that use as little

extra space as possible (as sought also by Brönnimann et al. [6]).
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Appendix: Complete Code

1 // Timothy Chan "ch3d.cc" 12/02 3-d lower hull (in C++)
2
3 // a simple implementation of the O(n log n) divide-and-conquer algorithm
4
5 // input: coordinates of points
6 // n x_0 y_0 z_0 ... x_{n-1} y_{n-1} z_{n-1}
7
8 // output: indices of facets
9 // i_1 j_1 k_1 i_2 j_2 k_2 ...
10
11 // warning: ignores degeneracies and robustness
12 // space: uses 6n pointers
13
14
15 #include <stream.h>
16
17 struct Point {
18 double x, y, z;
19 Point *prev, *next;
20 void act() {
21 if (prev->next != this) prev->next = next->prev = this; // insert
22 else { prev->next = next; next->prev = prev; } // delete
23 }
24 };
25
26 const double INF = 1e99;
27 static Point nil = {INF, INF, INF, 0, 0};
28 Point *NIL = &nil;
29
30 inline double turn(Point *p, Point *q, Point *r) { // <0 iff cw
31 if (p == NIL || q == NIL || r == NIL) return 1.0;
32 return (q->x-p->x)*(r->y-p->y) - (r->x-p->x)*(q->y-p->y);
33 }
34
35 inline double time(Point *p, Point *q, Point *r) { // when turn changes
36 if (p == NIL || q == NIL || r == NIL) return INF;
37 return ((q->x-p->x)*(r->z-p->z) - (r->x-p->x)*(q->z-p->z)) / turn(p,q,r);
38 }
39
40 Point *sort(Point P[], int n) { // mergesort
41
42 Point *a, *b, *c, head;
43
44 if (n == 1) { P[0].next = NIL; return P; }
45 a = sort(P, n/2);
46 b = sort(P+n/2, n-n/2);
47 c = &head;
48 do
49 if (a->x < b->x) { c = c->next = a; a = a->next; }
50 else { c = c->next = b; b = b->next; }
51 while (c != NIL);
52 return head.next;
53 }
54
55 void hull(Point *list, int n, Point **A, Point **B) { // the algorithm
56
57 Point *u, *v, *mid;
58 double t[6], oldt, newt;
59 int i, j, k, l, minl;
60
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61 if (n == 1) { A[0] = list->prev = list->next = NIL; return; }
62
63 for (u = list, i = 0; i < n/2-1; u = u->next, i++) ;
64 mid = v = u->next;
65 hull(list, n/2, B, A); // recurse on left and right sides
66 hull(mid, n-n/2, B+n/2*2, A+n/2*2);
67
68 for ( ; ; ) // find initial bridge
69 if (turn(u, v, v->next) < 0) v = v->next;
70 else if (turn(u->prev, u, v) < 0) u = u->prev;
71 else break;
72
73 // merge by tracking bridge uv over time
74 for (i = k = 0, j = n/2*2, oldt = -INF; ; oldt = newt) {
75 t[0] = time(B[i]->prev, B[i], B[i]->next);
76 t[1] = time(B[j]->prev, B[j], B[j]->next);
77 t[2] = time(u, u->next, v);
78 t[3] = time(u->prev, u, v);
79 t[4] = time(u, v->prev, v);
80 t[5] = time(u, v, v->next);
81 for (newt = INF, l = 0; l < 6; l++)
82 if (t[l] > oldt && t[l] < newt) { minl = l; newt = t[l]; }
83 if (newt == INF) break;
84 switch (minl) {
85 case 0: if (B[i]->x < u->x) A[k++] = B[i]; B[i++]->act(); break;
86 case 1: if (B[j]->x > v->x) A[k++] = B[j]; B[j++]->act(); break;
87 case 2: A[k++] = u = u->next; break;
88 case 3: A[k++] = u; u = u->prev; break;
89 case 4: A[k++] = v = v->prev; break;
90 case 5: A[k++] = v; v = v->next; break;
91 }
92 }
93 A[k] = NIL;
94
95 u->next = v; v->prev = u; // now go back in time to update pointers
96 for (k--; k >= 0; k--)
97 if (A[k]->x <= u->x || A[k]->x >= v->x) {
98 A[k]->act();
99 if (A[k] == u) u = u->prev; else if (A[k] == v) v = v->next;

100 }
101 else {
102 u->next = A[k]; A[k]->prev = u; v->prev = A[k]; A[k]->next = v;
103 if (A[k]->x < mid->x) u = A[k]; else v = A[k];
104 }
105 }
106
107 main() {
108
109 int n, i;
110 cin >> n;
111
112 Point *P = new Point[n]; // input
113 for (i = 0; i < n; i++) { cin >> P[i].x; cin >> P[i].y; cin >> P[i].z; }
114
115 Point *list = sort(P, n);
116 Point **A = new Point *[2*n], **B = new Point *[2*n];
117 hull(list, n, A, B);
118
119 for (i = 0; A[i] != NIL; A[i++]->act()) // output
120 cout << A[i]->prev-P << " " << A[i]-P << " " << A[i]->next-P << "\n";
121 delete A; delete B; delete P;
122 }
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