
On Constant Factors in Comparison-Based Geometric Algorithms

and Data Structures∗

Timothy M. Chan† Patrick Lee‡

January 14, 2015

Abstract

Many standard problems in computational geometry have been solved asymptotically op-
timally as far as comparison-based algorithms are concerned, but there has been little work
focusing on improving the constant factors hidden in big-Oh bounds on the number of com-
parisons needed. In this paper, we consider orthogonal-type problems and present a number of
results that achieve optimality in the constant factors of the leading terms, including:

• an algorithm for the 2D maxima problem that uses n lg h+O(n
√

lg h) comparisons, where
h denotes the output size;

• a randomized algorithm for the 3D maxima problem that uses n lg h+O(n lg2/3 h) expected
number of comparisons;

• a randomized algorithm for detecting intersections among a set of orthogonal line segments
that uses n lg n+O(n

√
lg n) expected number of comparisons;

• a data structure for point location among 3D disjoint axis-parallel boxes that can answer
queries in (3/2) lg n+O(lg lg n) comparisons;

• a data structure for point location in a 3D box subdivision that can answer queries in
(4/3) lg n+O(

√
lg n) comparisons.

Some of the results can be adapted to solve nonorthogonal problems, such as 2D convex hulls
and general line segment intersection.

Our algorithms and data structures use a variety of techniques, including Seidel and Adamy’s
planar point location method, weighted binary search, and height-optimal BSP trees.

1 Introduction

Asymptotic bounds on the number of comparisons required for classical problems such as sorting
and selection are well understood. Researchers have even investigated the constant factors in the
leading term for the exact worst-case number of comparisons. For example, the optimal number
of comparisons required to sort n numbers [35, 25] is n lg n−Θ(n), i.e., the constant factor in the

∗A preliminary version of this paper has appeared in Proc. 30th ACM Sympos. Comput. Geom., pages 40–49,
2014.
†Cheriton School of Computer Science, University of Waterloo, tmchan@uwaterloo.ca. This work was supported by

NSERC; part of the work was done during the author’s visit to the Department of Computer Science and Engineering,
Hong Kong University of Science and Technology.
‡Cheriton School of Computer Science, University of Waterloo, p3lee@uwaterloo.ca.

1

leading term is 1. For median finding [21, 22], currently the best upper bound on the worst-case
number of comparisons is about 2.95n and the best lower bound is about (2+δ)n for some concrete
constant δ > 0. For randomized median-finding algorithms [19], both the upper and lower bound
on the expected number of comparisons are 1.5n± o(n). For heap building [28, 37], the best upper
bound is 1.625n+O(lg n lg∗ n) and the best lower bound is about 1.37n. The list goes on.

By contrast, not much work has been done regarding constant factors of comparison-based al-
gorithms in the computational geometry literature. The present paper investigates this research
direction. There are obviously a limitless number of problems in our field that one might consider,
not all are worth pursuing from this new perspective, but we will pick several representative prob-
lems that have fundamental importance and that require nontrivial interesting techniques to find
the best constant factors, not just straightforward modifications of existing algorithms. We choose
mainly orthogonal-type problems where the obvious definition of a comparison suffices—comparing
of two coordinate values of two input points, or in the case of a data structure problem, comparing
the coordinate value of a query point with an input point. For simplicity, we assume that there are
no degeneracies—that all coordinate values are distinct, or in the case of a data structure problem,
the coordinates of the query point are distinct from the coordinates of the input points—so that
there is no need to distinguish between two-way vs. three-way comparisons.

Results. The highlights of our results are listed below:

1. We can compute the h maxima among a set of n points in 2D by an output-sensitive algorithm
that uses n lg h+O(n

√
lg h) comparisons (see Section 2.1 or 2.2).

2. We can compute the maxima among a set of n points in 3D by a randomized algorithm that
uses n lg n+ O(n

√
lg n) expected number of comparisons (see Section 2.3). By contrast, the

previous algorithm requires about 2n lg n comparisons.

3. We can compute the h maxima among a set of n points in 3D by a randomized output-sensitive
algorithm that uses n lg h+O(n lg2/3 h) expected number of comparisons (see Section 2.4).

4. We can detect whether there exists an intersection among a set of n line segments, each vertical
or horizontal, by a randomized algorithm that uses n lg n + O(n

√
lg n) expected number of

comparisons (see Section 2.5). By contrast, the trivial algorithm requires 3n lg n comparisons.
The same result holds for computing vertical decomposition of n horizontal line segments.
(For reporting all k intersections, the number of comparisons increases by an O(n lg(1+k/n))
term.)

5. We can build a data structure for a set of n disjoint boxes in 3D so that we can locate the
box containing a query point using (3/2) lg n+O(lg lg n) comparisons (see Section 3.3).

6. We can build a data structure for a subdivision of space into n disjoint boxes in 3D so that
we can locate the box containing a query point using (4/3) lg n+O(

√
lg n) comparisons (see

Section 3.4).

All of the above bounds are optimal except for the lower-order terms (see Appendix A for lower
bound proofs for items 1 and 4). Items 5–6 may be viewed as 3D generalizations of a result by
Seidel and Adamy [46], who previously showed that 2D point location queries can be answered
using lg n+O(

√
lg n) comparisons.

2

Some of these results may be extended to nonorthogonal problems; for example, item 1 also
applies to 2D output-sensitive convex hulls, item 3 applies to 3D convex hulls, and item 4 applies
to general 2D line segment intersection detection and vertical decomposition of line segments.
However, for nonorthogonal problems, the definition of a comparison needs to be extended to include
testing of certain predicates (e.g., determining whether three points are in clockwise order), and
we get into the delicate issue of whether just counting the number of predicate tests is meaningful,
or whether some predicates should cost more than others (related is the nontrivial issue of which
predicates are actually necessary, also addressed in a series of work, starting with [38], on geometric
algorithms that use minimum-degree predicates).

Motivation. Improving constant factors in the running time of asymptotically optimal algorithms
of course is important in practice, and the number of comparisons is a measure that can be formally
studied from the theoretical perspective. We do not claim practicality of most of our algorithms,
however, because of potentially larger constants in not only the lower-order terms but also the cost
of other operations beside comparisons (although in all but one of our algorithms, the actual running
time will be proportional to the stated bounds on the number of comparisons). One exception is
our data structure results: here, the query algorithms are simple enough to make the number of
comparisons a good indicator of the actual worst-case query time.

One could concoct hypothetical scenarios in which performing comparisons or probes to the
input is expensive, making it important for algorithms to minimize the number of comparisons.
But honestly it just seems a natural question to ask what is the minimum number of comparisons
required to solve basic geometric problems. Such pursuit may lead to deeper understanding of the
complexity of these problems and the relative power of different algorithmic techniques. Besides,
the comparison model has long been recognized as a fruitful model to study lower bounds (although
the main contributions of the present paper lie on the upper bound side).

The research direction here may be viewed as complementary to the recent direction in explor-
ing non-comparison-based word-RAM algorithms in computational geometry (e.g., [11]). Ironically,
ideas from work on these algorithms will turn out to be useful also for comparison-based algorithms
(see Section 2.3). Another recent research direction on revisiting fundamental problems in computa-
tional geometry concerns instance-optimal algorithms [1]. These algorithms are comparison-based,
and may use potentially fewer comparisons than the bounds guaranteed by our results on eas-
ier instances; the issue of constant-factor overhead was not addressed there, though. Related are
distribution-sensitive data structures, and here some previous papers did take in account constant
factors (e.g., see Arya et al.’s work [2] which builds on Seidel and Adamy’s [46]).

More on previous related work. The prior work which is closest to ours, and which we have
already mentioned, is Seidel and Adamy’s paper on planar point location [46]. They actually looked
beyond the leading term and showed how to answer queries in lg n+2

√
lg n+O(lg lg n) comparisons,

and they proved a nearly matching lower bound in some restricted model. (Comparisons includes
x-comparisons of vertices, and vertex/edge aboveness tests.) The space of the data structure is
superlinear, but can be made linear at the expense of increasing the third term of the query bound
to O(lg1/4 n).

Along the same vein was a lesser known paper from 1993 by Dubé [23], who studied the problem
of d-dimensional dominance emptiness queries: decide whether a query orthant contains a data
point, and if so, report any such point. He gave a data structure to answer queries using about

3

bd/2c lg n comparisons (he didn’t explicitly state the lower-order term). By contrast, the trivial
algorithm requires d lg n comparisons. He also proved a matching lower bound. Alternatively, for
even d, a technique by Chan [7] for Klee’s measure problem can be adapted to give a simple method
for dominance emptiness with (d/2) lg n+O(1) comparisons.

Several previous work on the 2D maxima problem analyzed constant factors but only for the
special setting of uniformly distributed points inside a square. Golin [27] and Clarkson [17] de-
scribed algorithms using n+O(n6/7 log5 n) and n+O(n5/8) expected number of point comparisons
respectively. One point comparison apparently involves two coordinate comparisons.

There are other isolated papers touching on the issue of constant factors. A notable early
example is Fibonacci search, which can be used to compute the intersection of a convex polygon
with a line [13] using 2 logφ n+O(1) slope comparisons where φ is the golden ratio.

Techniques. Seidel and Adamy’s data structure [46] is a central tool we use to obtain many
of our algorithmic results, along with random sampling techniques. The ideas behind our 3D
data structures are also inspired by Seidel and Adamy’s (namely their use of weighted search tree
techniques with cleverly defined weights).

For our output-sensitive algorithms, the commonly seen guessing trick needs refinement, in
order to avoid a constant-factor increase. For our 3D point location data structures, we will see
that the problem amounts to finding new constructions of orthogonal binary space partition (BSP),
not just with good size bounds (as are typically studied) but with good height bounds.

2 Offline Problems

2.1 Output-Sensitive Maxima in 2D

In the maxima problem, we are given a set S of n points and we want to compute all maximal points,
i.e., all points p ∈ S such that p is not dominated by any other point in S. (Point q = (q1, . . . , qd)
dominates point p = (p1, . . . , pd) if qj > pj for every j.)

To warm up, we begin with the 2D maxima problem. Here, the maxima form a monotone chain,
i.e., a staircase. A simple, standard algorithm [36, 45] already uses n lg n+O(n) comparisons: after
sorting the x-coordinates, the problem can be solved easily in linear time by scanning the points
from right to left. The leading term is worst-case optimal in n. We therefore turn our attention to
output-sensitive algorithms.

Kirkpatrick and Seidel [33] presented an output-sensitive algorithm for the 2D maxima problem
with running time O(n lg h), where h denotes the number of maximal points. This algorithm is
related to their more well-known output-sensitive algorithm for 2D convex hulls [34].

Their maxima algorithm is simple: divide the point set into two subsets by using the median of
the x-coordinates, prune all points in the left subset that are below the highest point in the right
subset, then recursively compute the maxima of the two subsets. However, the constant factor
in the O(n lg h) bound is strictly greater than 1, because of the cost of median finding as well as
pruning.

To improve the constant factor, we propose a variant of Kirkpatrick and Seidel’s algorithm with
a larger branching factor b, which grows as the level in the recursion increases. The details are
given below. Our analysis is based on ideas from Chan, Snoeyink, and Yap [12].

4

Algorithm outline.

1. divide S into subsets S1, . . . , Sb by using b− 1 quantiles of the x-coordinates
2. for each subset Sj in right-to-left order:
3. prune all points from Sj that are lower than the highest maximal point found so far
4. recursively compute the maxima of Sj

Analysis. Line 1 requires solving a multiple selection problem for a set of numbers in one dimen-
sion (the x-coordinates). A randomized algorithm by Kaligosi et al. [32] solves this problem with
a near-optimal expected number of comparisons; in the case of b − 1 uniformly spaced ranks, the
number is n lg b + O(n).1 Line 3 requires O(n) comparisons. One can now see the advantage of
choosing a nonconstant b; even though we do not know how to optimize the hidden constant factor
in the O(n) term, the n lg b term will dominate.

To be a little more precise, we choose b = ri/ri−1 at the i-th level of recursion for some increasing
sequence r1, r2, . . . to be specified later. Let ` be a parameter to be set later.

The i-th level of the recursion has at most ri−1 subproblems of size at most n/ri−1. The total
expected number of comparisons at the i-th level can thus be bounded by ri−1·[(n/ri−1) lg(ri/ri−1)+
O(n/ri−1)] = n lg(ri/ri−1) +O(n). By a telescoping sum, the total over the first ` levels is at most
n lg r` +O(n`).

On the other hand, the i-th level can have at most h nontrivial subproblems. The total expected
number of comparisons at the i-th level can thus alternatively be bounded by h·[(n/ri−1) lg(ri/ri−1)+
O(n/ri−1)] = O(h(n/ri−1) lg ri). Assuming that ri grows superexponentially (as will be the case),
the total over all levels greater than ` is dominated by the leading term O(h(n/r`) lg r`+1).

The overall expected number of comparisons is

n lg r` +O(n`+ h(n/r`) lg r`+1).

To optimize this expression, we choose ri = 2i
2
. (Here, b = ri/ri−1 = 2Θ(i); in other words,

the branching factor grows exponentially as a function of the level i.) Set ` = b
√

lg(h lg h)c + 1.
Then the term n lg r` is equal to n`2 = n lg h+O(n

√
lg h). The term O(n`) is O(n

√
lg h). The last

term O(h(n/r`) lg r`+1) is O(n), since r` ≥ h lg h. We conclude that the overall expected number
of comparisons is n lg h+O(n

√
lg h).

Remarks. The same approach can be used to solve the 2D convex hull problem. First computing
the convex hull can be reduced to computing the upper or lower hull, if we initially split the point
set by the line through the leftmost and rightmost point, in linear time. We modify Kirkpatrick
and Seidel’s output-sensitive algorithm for 2D upper hulls [34] this time. Pruning involves solving a
bridge finding problem, reducible to 2D linear programming. In our version with branching factor
b, we compute the hull edges (the bridges) crossing the vertical lines at the b − 1 quantiles; Chan
and Chen [9, in the proof of Theorem 4.5] have shown how to find these bridges using O(b) calls to
a bridge finding subroutine on subsets of O(n/b) size, for a total time of O(b · n/b) = O(n), after
the points have been divided into subsets by the b − 1 vertical lines. We then remove all points

1Kaligosi et al.’s deterministic algorithm [32] has a larger lower-order term, with n lg b + O(n lg b lg lg lg b/ lg lg b)
comparisons. For an alternative solution, we can divide the input into n/s groups of size s and sort each group in total
(n/s) · (s lg s + O(s)) number of comparisons; as Frederickson and Johnson [26] described a selection algorithm for
n/s sorted arrays of size s with O((n/s) lg s) running time, b selections take O(b(n/s) lg s) time. Choosing s = b lg b
gives a deterministic multi-selection algorithm using n lg b+O(n lg lg b) comparisons.

5

directly underneath these bridges within the same time bound. The rest of the analysis remains the
same. However, the definition of a comparison needs to be extended to include sidedness tests and
comparisons of slopes formed by pairs of points. The number of x-comparisons is n lg h+O(n

√
lg h),

and the number of other comparisons is actually O(n
√

lg h).

2.2 Output-Sensitive Maxima in 2D: Bottom-Up Version

In this subsection, we note an alternative output-sensitive algorithm for the 2D maxima problem
by adapting Chan’s output-sensitive algorithm for 2D convex hulls [5]. The approach here can be
viewed as a bottom-up (mergesort-like) instead of top-down (quicksort-like) divide-and-conquer.

Define an r-grouping to be any partitioning of S into dn/re groups of size at most r, together
with the staircase (i.e., the sorted list of maxima) of each group.

Lemma 2.1. Given an r-grouping, we can compute the h maxima of S in O(h(n/r) lg r) time.

Proof. We use an algorithm similar to Jarvis march [31]. Given a current maximal point q, we
describe an O((n/r) lg r)-time algorithm to find the next maximal point q′ (to the right of q). Then
all maxima can be generated from left to right by performing h such operations.

To perform such an operation, we find the highest point to the right of q in each group, by
a binary search in the staircase of the group. The cost of these n/r binary searches is indeed
O((n/r) lg r). Then q′ is simply the highest of these points found over all groups.

An r-grouping can be computed using (n/r) · (r lg r + O(r)) = n lg r + O(n) comparisons (by
using sorting and scanning to construct the staircase of each group). If h is known, we could set
r = dh lg he, compute an r-grouping in n lg h + O(n lg lg h) comparisons, and then compute the h
maxima in O(n) additional comparisons by the above lemma. As h is not given in advance, the
original version of Chan’s algorithm [5] applies a guessing trick, using an increasing sequence of r
values; unfortunately, this hurts the constant factor. To improve the constant factor, the idea is to
compute an r-grouping not from scratch but by merging groups from the previous r-grouping.

Lemma 2.2. Given an r-grouping and r′ > r (with r′ divisible by r), we can compute an r′-grouping
in n lg(r′/r) +O(n) comparisons.

Proof. It suffices to show how to merge the staircases of r′/r groups of size r in r′ lg(r′/r) +O(r′)
comparisons. Since two sorted lists of total size r′ can be merged in at most r′ comparisons, r′/r
sorted lists of total size r′ can be merged by divide-and-conquer in at most r′dlg(r′/r)e comparisons.
Once the union of the r′/r groups has been sorted by x-coordinates, its staircase can be found in
a linear number of comparisons by the standard linear-scan algorithm.

Algorithm outline. Let r1, r2, . . . be an increasing sequence to be specified later.

1. for i = 1, 2, . . . until all maxima are found:
2. compute an ri-grouping from the previous ri−1-grouping by Lemma 2.2
3. compute the maxima of S using the ri-grouping by Lemma 2.1, but preempt

computation as soon as dri/ lg rie maxima are found

6

Analysis. Let ` be the smallest index with h ≤ dr`/ lg r`e.
Line 2 takes at most n lg(ri/ri−1) +O(n) comparisons. By a telescoping sum, the total over all

iterations is at most n lg r` + O(n`). Line 3 takes O(n) comparisons, because of the dri/ lg rie cap
on h. The total over all iterations is O(n`). The overall number of comparisons is

n lg r` +O(n`).

To optimize this expression, we again choose the sequence ri = 2i
2
. Then ` =

√
lg(h lg h)+O(1).

The term n lg r` is equal to n`2 = n lg h+O(n
√

lg h). The term O(n`) is O(n
√

lg h). We conclude
that the overall number of comparisons is n lg h+O(n

√
lg h).

Theorem 2.3. Given a nondegenerate set of n points in two dimensions, we can compute the h
maxima using n lg h+O(n

√
lg h) comparisons.

Remarks. The same approach can be used to solve the 2D convex hull problem. We modify
Chan’s output-sensitive algorithm for 2D convex hulls [6]. In the proof of Lemma 2.1, we use the
original Jarvis march for 2D convex hulls. In the proof of Lemma 2.2, we use Graham’s scan [29]
to compute 2D convex hulls in linear time after the sorted lists have been merged. The number of
x-comparisons is n lg h+O(n

√
lg h), and the number of sidedness tests is O(n

√
lg h).

The choice of sequence ri = 2i
2

and the idea of merging groups from the previous grouping were
already remarked upon in [6], though the constant factors were not analyzed there.

2.3 Maxima in 3D

Next we tackle the more challenging 3D maxima problem. The trivial algorithm uses 3n lg n+O(n)
comparisons: we just sort all x-, y-, and z-coordinates; afterwards, no more comparisons are needed.
A standard sweep-based algorithm [36, 45] uses 2n lg n + O(n) comparisons: we first sort the z-
coordinates in n lg n+O(n) comparisons, and then insert points in decreasing z-order; each insertion
requires at most lg n comparisons by binary search in the xy-projected staircase.

A still better algorithm can be obtained by a different approach, exploiting a powerful tool by
Seidel and Adamy [46]—that planar point location queries require lg n + O(

√
lg n) comparisons.

The reduction from 3D maxima to 2D point location uses Clarkson–Shor-style sampling [18, 40].
A similar reduction from 3D convex hulls to 2D point location was noted before by Chan and
Pǎtraşcu [11] but in the context of non-comparison-based, word-RAM algorithms. We notice that
this reduction can also help in reducing the number of comparisons.

Before describing the algorithm, we first restate the maxima problem in a more convenient
form. Instead of a point set, suppose that we are given a set S of orthants, each of the form
(−∞, x]× (−∞, y]× (−∞, z]. Define the staircase polyhedron P(S) to be the union of the orthants
of S; the polyhedron has O(|S|) vertices, edges, and faces. The original problem is equivalent to
identifying the orthants of S whose corners are vertices of P(S). We will solve a more general
problem—namely, construct all the vertices, edges, and faces of P(S).

Let VD(S) denote the cells in the vertical decomposition of the complement of (i.e., the region
above) P(S) (where z is the vertical direction). The decomposition is defined as follows: take
each horizontal face (a polygon) of P(S) and subdivide it into rectangles by adding y-vertical line
segments at its vertices; then extend each resulting rectangle upward to z =∞.

7

Algorithm outline. Let r be a parameter to be set later.

1. take a random sample R ⊂ S of size r
2. build a point location structure for VD(R)
3. for each s ∈ S:
4. locate the cell ∆ ∈ VD(R) that contains the corner of s
5. find all cells intersecting s by walking in VD(R), starting from ∆
6. for each ∆ ∈ VD(R):
7. obtain the conflict list S∆ = {s ∈ S : s intersects ∆}
8. solve the problem for S∆ inside ∆

Analysis. Line 2 takes O(r lg r) expected number of comparisons, since we can construct P(R)
by the standard sweep algorithm for 3D maxima, generate VD(R) from P(R) in linear time, and
apply Seidel and Adamy’s (randomized) preprocessing algorithm [46].

Line 4 takes a total of n · (lg n+O(
√

lg n)) comparisons by n invocations of Seidel and Adamy’s
query algorithm [46].

Line 5 takes time linear in the sum of the degrees of the cells intersecting s, by breadth- or
depth-first search, where the degree δ∆ of a cell ∆ refers to the number of neighboring cells in

VD(R). The total number of comparisons in lines 5 (and 7) is thus O
(∑

∆∈VD(R) δ∆|S∆|
)
. By

Clarkson and Shor’s analysis [18, 40],2 the expected value of this expression is O(r · n/r) = O(n).

Line 8 takes O
(∑

∆∈VD(R) |S∆| lg |S∆|
)

comparisons if the subproblems are solved directly by the

standard sweep algorithm. By Clarkson and Shor’s analysis [18, 40], the expected value of this
expression is O(r · (n/r) lg(n/r)).

The overall expected number of comparisons is

n lg n+O(n
√

lg n+ r lg r + n lg(n/r)).

Choosing r = dn/ lg ne yields n lg n+O(n
√

lg n).

Theorem 2.4. Given a nondegenerate set of n points in three dimensions, we can compute the
maxima using n lg n+O(n

√
lg n) expected number of comparisons.

Remarks. The above algorithm can be adapted to solve the 3D convex hull problem. First,
computing the convex hull can be reduced to computing the lower hull, by applying a translation
to map the lowest point to the origin and then applying a projective transformation (x, y, z) 7→
(x/z, y/z, 1/z). By duality, the lower hull problem is equivalent to computing the upper envelope
of n planes in 3D. We can redefine VD(R) to be the canonical triangulation [40] of the region above
the upper envelope of R. In line 4, instead of using corners, we locate an initial cell crossed by a
given plane s, by finding a vertex of the upper envelope of R that is extreme along the direction
defined by s. This extreme point query reduces to planar point location in the projection of the dual
of the upper envelope of R, and so we can again invoke Seidel and Adamy’s algorithm for this step.
The rest of the analysis remains the same. We thus obtain an algorithm that uses n lg n+O(n

√
lg n)

expected number of comparisons, where comparisons now include more complicated predicates.

2To deal with the occurrence of δ∆, one needs a more carefully defined configuration space when applying their
technique; e.g., see Lemma 4.2 of [18].

8

2.4 Output-Sensitive Maxima in 3D

We now present an output-sensitive algorithm for the 3D maxima problem, the main result of the
first part of the paper.

Extending the top-down divide-and-conquer approach in Section 2.1 to 3D is not obvious.
Kirkpatrick and Seidel [33] described more than one output-sensitive algorithm for the maxima
problem in 3 and higher dimensions, but the hidden constant factors are all strictly greater than 1.
Clarkson and Shor [18] presented an O(n lg h) randomized algorithm for 3D convex hulls (later
derandomized by Chazelle and Matoušek [15]), which can be adapted for the 3D maxima problem
and can be regarded as a generalization of the division strategy from Section 2.1. At the i-th
level, we divide into O(ri−1) subproblems of roughly O(n/ri−1) size by using conflict lists S∆ for
the cells ∆ ∈ VD(R) for a random sample R ⊂ S. We prune away trivial subproblems to ensure
that at most h subproblems are generated at each level. The pruning step in Clarkson and Shor’s
algorithm required executing a 2D O(n lg h) algorithm along cell boundaries, causing an increase
in the constant factor.

Alternatively, the bottom-up approach in Section 2.2 by Chan [5] can be extended to 3D, but the
guessing of the output size causes a constant-factor blow-up, because we do not know how to merge
two staircase polyhedra in linear time with constant factor 1. Yet another O(n lg h) algorithm for
3D maxima proposed by Clarkson [17] (see also [6, 41]) employs an incremental approach; this too
has constant factor strictly greater than 1.

Our solution follows the top-down approach using Clarkson–Shor-style random sampling, but
instead of pruning by solving 2D subproblems, we borrow an idea from the bottom-up approach
(as in Section 2.2), of running a Jarvis-march-like algorithm at every level of recursion. This
combination of ideas is new.

Define an r-division to consist of the following: (i) a random sample R ⊂ S of size r, (ii) a
point location structure for VD(R) with O(lg r) query time, and (iii) the conflict list S∆ for every
∆ ∈ VD(R).

Lemma 2.5. Given an r-division, we can compute the h maxima of S in O(h(n/r) lg2 r) expected
number of comparisons.

Proof. We use an algorithm similar to Jarvis march or gift wrapping [31, 45], to compute the
staircase polyhedron P(S). Given a current vertex q of P(S), we describe an O((n/r) lg2 r)-time
algorithm to find the neighboring vertex of q in P(S) along each of the at most 6 directions; in
other words, to determine the first point on the boundary of P(S) hit by an axis-parallel ray from
q. Then the entire polyhedron P(S) can be generated by a breadth- or depth-first search using
O(h) such ray shooting operations.

Before describing how to do ray shooting, we first consider a simpler operation: in a membership
test, we want to decide whether a given point q′ lies in the interior of P(S). To perform such a
membership test, we first locate the cell ∆ ∈ VD(R) containing q′ in O(lg r) time (we may assume
that q′ is in the complement of P(R), for otherwise the answer is no). We can then test whether q′ lie
inside any of the orthants in S∆. The cost is O(max∆∈VD(R) |S∆|). By Clarkson’s analysis [16, 40],
this expression has expected value O((n/r) lg r).

Now, consider a ray shooting query for, say, a ray ρ parallel to the x-axis (the case of rays parallel
to the y- or z-axis is similar). Consider the O(r) points q1, q2, . . . on ρ that have x-coordinates from
the x-projection of R. By binary search, find two consecutive points qi and qi+1 with qi outside
the interior of P(S) and qi+1 inside (there is a unique such i since P(S) is orthogonally convex).

9

This requires O(lg r) membership tests, costing O((n/r) lg2 r) time. Now, the answer lies on the
segment qiqi+1, where qi and qi+1 lie in a common cell ∆ ∈ VD(R), which we can identify by point
location in O(lg r) time. We can find the answer now by a linear search in S∆. The cost of this
final step is O(max∆∈VD(R) |S∆|), which as noted has expected value O((n/r) lg r).

It is possible to compute an r-division in n lg r+O(n
√

lg r) comparisons by the approach from
Section 2.3. If h is known, we could set r = h lg2 h, compute an r-division in n lg h + O(n

√
lg h)

comparisons, and then compute the h maxima in O(n) additional comparisons by the above lemma.
As h is not given in advance, we need to apply a guessing trick, using an increasing sequence of r
values; unfortunately, this hurts the constant factor. To improve the constant factor, the idea is to
compute an r-division not from scratch but by refining the previous r-division.

Lemma 2.6. Given an r-division and r′ > r, we can compute an r′-division in n lg(r′/r) +
O(n

√
lg(r′/r) + n lg lg r + r′ lg r′) expected number of comparisons.

Proof. Given an r-division corresponding to a random sample R ⊂ S, we (i) take a random sample
R′ ⊂ S containing R of size r′, and (ii) compute a point location structure for R′ in O(r′ lg r′)
number of comparisons. It remains to describe how to (iii) compute the conflict lists for R′.

We first identify the cell of VD(R) containing each corner point of S (if it exists). This can
be done by a linear scan over all conflict lists for R, in time O(

∑
∆∈VD(R) |S∆|). By Clarkson and

Shor’s analysis [18, 40], this expression has expected value O(r · n/r) = O(n).
Next, for each cell ∆ ∈ VD(R), we build Seidel and Adamy’s point location structure for

the xy-projection of VD(R′) restricted inside ∆. This takes time O(
∑

∆∈VD(R) |R′∆| lg |R′∆|). By
Clarkson’s analysis [16, 40], since R is a random sample of R′, this expression has expected value
O(r · (r′/r) lg(r′/r)) = O(r lg(r′/r)).

For each corner point q of S lying inside a cell ∆ ∈ VD(R), we then locate the cell ∆′ ∈ VD(R′)
that contains q by Seidel and Adamy’s query algorithm. This takes a total of n · (lg η +O(

√
lg η))

comparisons, where η = max∆∈VD(R) |R′∆|. By Clarkson’s analysis [16, 40], since R is a random
sample of R′, the expected value of η is O((r′/r) lg r). By Jensen’s inequality, the expected value
of n · (lg η +O(

√
lg η)) is n · (lg(r′/r) +O(lg lg r +

√
lg(r′/r))).

For each s ∈ S, we can then find all cells of VD(R′) intersecting s by walking in VD(R′),
starting from the cell containing the corner of s. This takes time linear in the sum of the degrees
of these cells, by breadth- or depth-first search. Afterwards, we obtain the conflict lists S∆′ for all
cells ∆′ ∈ VD(R′). The cost is O(

∑
∆′∈VD(R′) δ∆′ |S∆′ |). By Clarkson and Shor’s analysis [18, 40],

this expression has expected value O(r′ · n/r′) = O(n).

Algorithm outline. Let r1, . . . , rt be an increasing sequence to be specified later.

1. for i = 1, 2, . . . until all maxima are found:
2. compute an ri-division from the previous ri−1-division by Lemma 2.2
3. compute all maxima of S using the ri-division by Lemma 2.1, but preempt

computation as soon as dri/ lg2 rie maxima are found
4. if i = t then directly compute all maxima of S∆ inside all cells ∆ of the rt-division

Analysis. Let ` be the smallest index with h ≤ dr`/ lg2 r`e.
Line 2 takes at most n lg(ri/ri−1) + O(n

√
lg(ri/ri−1) + n lg lg ri−1 + ri lg ri) expected num-

ber of comparisons. By a telescoping sum, the total over all iterations is at most n lg r` +

10

O(n
∑`
i=1

√
lg(ri/ri−1) + `n lg lg r` + r` lg r`), where in the last term we assume that ri grows su-

perexponentially (as will be the case). Line 3 takes O(n) expected number of comparisons, because
of the dri/ lg2 rie cap on h. The total over all iterations is O(n`). The overall expected number of
comparisons is

n lg r` +O

(
n
∑̀
i=1

√
lg(ri/ri−1) + `n lg lg r` + r` lg r`

)
.

All this assumes that h ≤ drt/ lg2 rte. Otherwise, we set ` = t and include an extra term for the

cost of line 4, which is O
(∑

∆∈VD(R) |S∆| lg |S∆|
)

for a random sample R of size rt; by Clarkson

and Shor’s analysis, this has expected value O(rt · (n/rt) lg(n/rt)) = O(n lg(n/rt)).
To optimize the above expression, we choose ri = 2i

3
for i = 1, . . . , t − 1 and rt = dn/ lg ne,

where t = dlg1/3(n/ lg n)e. Then ` = lg1/3(h lg2 h)+O(1). The term n lg r` is at most n`3 = n lg h+
O(n lg2/3 h). The termO(n

∑`
i=1

√
lg(ri/ri−1)) isO(n

∑`
i=1

√
i3 − (i− 1)3) = O(n

∑`
i=1 i) = O(n`2) =

O(n lg2/3 h). The term O(`n lg lg r`) is O(n lg1/3 h lg lg h). The term O(r` lg r`) is O(n). For
h > drt/ lg2 rte, the extra term O(n lg(n/rt)) is O(n lg lg n) = O(n lg lg h). We conclude that
the overall number of comparisons is n lg h+O(n lg2/3 h).

Theorem 2.7. Given a nondegenerate set of n points in three dimensions, we can compute the h
maxima using n lg h+O(n lg2/3 h) expected number of comparisons.

Remarks. The approach in this section does not seem to work for 3D convex hulls, or equivalently
3D lower envelopes of planes: the problem lies in our proof of Lemma 2.6, which inherently requires
the use of corners which planes lack.

2.5 Orthogonal Line Segment Intersection Detection

In this subsection, we consider the problem of detecting an intersection between a set of nv vertical
segments and a set of nh horizontal segments. Let n = nv + nh. The trivial algorithm uses
3n lg n+O(n) comparisons: we just sort all coordinates (each segment is defined by three coordinate
values); afterwards, no more comparisons are required.

A standard algorithm based on a vertical sweep line [4, 45] uses (3n−nv) lg n+O(n) comparisons:
we sort all coordinates except for the top y-coordinates of the vertical segments; then during the
sweep, we only need to compare the top y-coordinate of each vertical segment with just one y-
coordinate to detect intersections. Assuming that nv ≥ n/2 without loss of generality, the number
of comparisons is thus 2.5n lg n+O(n).

Other known O(n lg n)-time algorithms (e.g., randomized incremental construction [18], hered-
itary segment tree [14], . . .) do not seem to improve the constant factor.

We observe that the random sampling approach from Section 2.3 leads to a better result. The
algorithm follows the same algorithm outline in Section 2.3 except for a different definition of
the vertical decomposition VD(S) (which is formed by shooting an upward and a downward ray
from each segment endpoint—this is also known as the trapezoidal decomposition in general for
nonorthogonal segments). We may assume that the segments in R are disjoint, since we can stop
as soon as an intersection is found. Thus, VD(R) has size O(r). In line 4, we do point location
for just one of the two endpoints of the segment s. Using Seidel and Adamy’s point location
structure [46], we obtain a randomized algorithm that uses n lg n+O(n

√
lg n) expected number of

comparisons.

11

Theorem 2.8. Given a nondegenerate two-dimensional set of n line segments, each vertical or
horizontal, we can detect whether there is an intersection using n lg n+O(n

√
lg n) expected number

of comparisons.

Remarks. By the same approach, we can compute the vertical decomposition of a set of n
horizontal segments in n lg n+O(n

√
lg n) expected number of comparisons. (The trivial algorithm

requires 2n lg n+O(n) comparisons.)
The same result for the detection and the vertical decomposition problem also holds for general

nonorthogonal line segments, where a comparison now means either comparing two endpoints’
x-coordinates, or testing whether an endpoint is above a segment.

2.6 Orthogonal Line Segment Intersection Reporting

For the problem of reporting all k intersections between vertical and horizontal segments, the
same approach yields a randomized algorithm with n lg n + O(n

√
lg n) + O(k) expected number

of comparisons. We show that it is possible to reduce the O(k) term to O(n lg(1 + k/n)) in the
number of comparisons, although the running time still has the O(k) term. (This is a rare instance
where the number of comparisons does not reflect the actual running time.)

We use the same random sampling approach, but with a different choice of sample size r as
described later. The segments in R are no longer disjoint: the expected number of intersections in R
is O(k(r/n)2), and the expected size of VD(R) is O(r+k(r/n)2). We can compute VD(R) by one of
the standard algorithms in O(r lg r+ k(r/n)2) time. We can solve the problem for each conflict list
S∆ using O(|S∆| lg |S∆|) comparisons by sorting all coordinates and running any optimal segment
intersection algorithm afterwards, which requires no additional comparisons. (Thus, although there
is an O(k) term when bounding the running time, there is no such term when bounding the
number of comparisons.) By Clarkson and Shor’s analysis,

∑
∆∈VD(R) δ∆|S∆| has expected value

O((r+k(r/n)2)·n/r), and
∑

∆∈VD(R) |S∆| lg |S∆| has expected value O((r+k(r/n)2)·(n/r) lg(n/r)).
The overall expected number of comparisons is

n lg n+O(n
√

lg n+ r lg r + (n+ kr/n) lg(n/r)).

To set r to optimize this expression, we need an estimate for k, which can be obtained by
another sampling step: Take n random pairs of horizontal and vertical segments and let X be the
number of such pairs that intersect. Then µ := E[X] = n · k/(nhnv). Define k̃ = X ·nhnv/n. Then
E[k̃] = k. Furthermore, by a standard Chernoff bound, X = Ω(µ), i.e., k̃ = Ω(k), with probability
at least 1 − e−Ω(µ) = 1 − e−Ω(k/n) > 1 − n−ω(1) if k = ω(n lg n). Consequently, n lg n + k̃ = Ω(k)
with high probability (w.h.p.), regardless of the value of k.

Now, we choose r = dn2/(n lg n + k̃)e. Since r = O(n/ lg n), the O(r lg r) term is O(n). Also,
since r = O(n2/k) w.h.p., the kr/n term is O(n) w.h.p. Finally, the factor lg(n/r) is O(lg(lg n +
k̃/n)) = O(lg lgn + lg(1 + k̃/n)). By Jensen’s inequality, lg(1 + k̃/n) has expected value at most
lg(1+k/n). We conclude that the total number of comparisons is n lg n+O(n

√
lg n+n lg(1+k/n)).

Theorem 2.9. Given a nondegenerate two-dimensional set of n line segments, each vertical or
horizontal, we can report all k intersections using n lg n + O(n

√
lg n + n lg(1 + k/n)) expected

number of comparisons and n lg n+O(n
√

lg n+ k) expected time.

12

Remark. For general nonorthogonal line segments, the O(k) term is still required. (Again the
definition of comparisons needs to be extended.)

3 Data Structure Problems

In this section, we study the number of comparisons needed for a fundamental class of geometric
data structure problems: point location.

We begin with a trivial observation which, in the orthogonal setting, relate this class of problems
to another well-studied topic in computational geometry—binary space partition (BSP) trees.

Formally, a BSP tree is a binary tree where each node is associated with a cell, and the cells of
the two children of a node u is obtained by cutting u’s cell into two by a hyperplane. The tree is
for a given set S of objects if the interior of each leaf cell does not intersect the boundary of any
object in S, and the cell of the root is the entire space. In an orthogonal BSP tree, all hyperplane
cuts must be axis-parallel, and thus all cells must be axis-parallel boxes.

Observation 3.1. For a set S of orthogonal polyhedral objects, there exists a data structure that can
locate the object containing any query point in at most H comparisons iff there exists an orthogonal
BSP tree for S with height at most H.

Proof. The decision tree associated with the query algorithm is precisely an orthogonal BSP tree,
and vice versa.

(Note that the above equivalence concerns minimizing query complexity without space consid-
erations, and does not address time–space tradeoffs.)

A large body of work has studied BSP tree constructions with good asymptotic worst-case
bounds on the size of the tree [43, 24, 30, 47]. To get good query algorithms for point location, we
need more, namely, BSP tree constructions with good height bounds; this direction has not been
as well-pursued. Still, lower bounds on the query complexity of point location can be immediately
derived from lower bounds on the sizes of BSP trees, since the height is at least the binary logarithm
of the size.

For example, for n disjoint boxes in 3D, a classic result by Paterson and Yao [43] (see also
[24]) yielded a matching upper and lower bound of Θ(n3/2) on the worst-case size of an optimal
orthogonal BSP tree. For another example, for a box subdivision with n boxes in 3D (interior-
disjoint boxes that fill the entire space), a result by Hershberger, Suri, and Tóth [30] yielded
matching upper and lower bound of Θ(n4/3). These size lower bounds immediately implies lower
bounds of (3/2) lg n−O(1) and (4/3) lg n−O(1) on the worst-case number of comparisons needed
for point location for disjoint boxes and box subdivisions in 3D respectively. Both upper bound
constructions do not produce balanced BSP trees with good height bounds (one reason is the
arbitrary occurrences of so-called free cuts). The main results of this section are new BSP tree
constructions with height upper bounds matching these lower bounds up to lower-order terms in
3D.

In a higher constant dimension d, Dumitrescu, Mitchell, and Sharir [24] extended Paterson and
Yao’s result and obtained an O(nd/2) upper bound on the BSP tree size for disjoint boxes, while
Hershberger, Suri, and Tóth [30] obtained an O(n(d+1)/3) upper bound for box subdivisions. We
obtain new height upper bounds in higher dimensions as well. Unfortunately, optimality is not
known in higher dimensions: for box subdivisions, the best lower bound by Hershberger et al. on

13

the BSP tree size is Ω(nβ(d)) for some function β(d) that does not grow to infinity as d increases,
but converges to a constant, the golden ratio φ = 1.618 · · ·.

3.1 A Weighted Search Technique

A key technique underlying all our data structures is the use of weighted search trees, inspired by
Seidel and Adamy’s data structure for planar point location [46] (which in turn is related to a
classical point location method by Preparata [44]).

We present a lemma that encapsulates the essence of this idea. It may look simple in hindsight,
but it provides a useful viewpoint—it allows us to rethink the problem of constructing a balanced
BSP tree in terms of constructing a multiway space partition (MSP) tree, with possibly large degree
but very shallow (sublogarithmic!) height.

Formally, we define an MSP tree to be a tree where each node is associated with a cell, and the
cells of the children of a degree-k node u is obtained by cutting u’s cell using k−1 hyperplanes that
do not intersect inside u’s cell. In an orthogonal MSP tree, all hyperplane cuts must be axis-parallel,
and thus the hyperplane cuts at each node must be orthogonal to the same direction.

Lemma 3.2. Given an MSP tree with W leaves and height H, we can convert it to a BSP tree
with the same W leaf cells and height lgW +O(H).

Proof. For each node u in the MSP tree, let W (u) denote the number of leaves descended from
u. Let v1, . . . , vk be the children of u (in the order corresponding to the hyperplane cuts); then
W (u) = W (v1) + · · · + W (vk). Replace the outgoing edges of u with a binary tree with root
u and leaves v1, . . . , vk in the given order, so that the path length from u to vi is bounded by
lgW (u)− lgW (vi) +O(1). The existence of such a binary tree is well known [39].

Then a path u0, u1, . . . , uj (j ≤ H) in the MSP tree is transformed into a path of length bounded

by the telescoping sum
∑j−1
i=0 [lgW (ui)− lgW (ui+1) +O(1)] ≤ lgW +O(j).

3.2 Point Location in 2D: Rederiving Seidel and Adamy’s Method

Lemma 3.2 allows us to rederive Seidel and Adamy’s planar point location result cleanly (at least
the first version with lg n+O(

√
lg n) query time which ignores constants in the lower-order term).

This follows from a simple MSP tree construction for n disjoint line segments with size n2O(
√

lgn)

and height O(
√

lg n).

Algorithm outline. We are given a set S of n disjoint line segments and a trapezoidal cell ∆
that has two vertical sides and has its top and bottom sides defined by two segments of S. We
construct an MSP tree inside ∆ as follows:

1. divide ∆ by r vertical lines so that each subcell has O(n/r) endpoints
2. divide each subcell into subsubcells by the segments from S that completely cut across

the subcell (these are free cuts)
3. recursively build an MSP tree inside each subsubcell

Analysis. There are at most nr subsubcells. Let ni be the number of segments intersecting the i-
th subsubcell. Then maxi ni = O(n/r), since each segment intersecting a subsubcell contributes to

14

a vertex inside the subsubcell after the free cuts. Furthermore,
∑
i ni ≤ 2n, since the two endpoints

of a segment lie in two subsubcells.
Line 1 adds 1 to the height. Line 2 adds 1 as well.
The recurrences for the number of leaves W (n) and the height H(n) of the MSP tree are then

given by
W (n) ≤

∑
i

W (ni) + nr and H(n) ≤ max
i
H(ni) + 2

for some ni’s with maxi ni = O(n/r) and
∑
i ni ≤ 2n. (The nr term in W (n) accounts for subsub-

cells that are empty.)
To solve the W (n) recurrence, note that the total cost at the j-th level of the recursion tree

is bounded by 2jnr. We choose a fixed value for r. Then the recursion has O(lg n/ lg r) levels.

Hence, W (n) ≤ nr2O(lgn/ lg r). We then also have H(n) = O(lg n/ lg r). Setting r = 2
√

lgn gives

W (n) ≤ n2O(
√

lgn) and H(n) = O(
√

lg n). By Lemma 3.2, we obtain a BSP tree with height
lg n + O(

√
lg n). This translates to a data structure that can answer point location queries in

lg n+O(
√

lg n) comparisons, where in the nonorthogonal setting, a comparison is either comparing
two endpoints’ x-coordinates, or testing whether an endpoint is above a segment.

3.3 Point Location for Disjoint Boxes in d ≥ 3 Dimensions

Point location queries for n disjoint boxes in a constant dimension d ≥ 3 can be trivially answered
in d lg n comparisons after sorting. We now present an improved result by obtaining a new height
upper bound for BSP trees, using Lemma 3.2. We adopt the following known partitioning scheme:

Lemma 3.3. Given n axis-parallel flats in a space of constant dimension d, and given r, we can
divide space into O(rd) subcells so that the number of j-flats intersecting each subcell is O(n/rd−j).
This division is in fact an orthogonal MSP tree with height O(1).

Proof. A simple construction was given by Overmars and Yap [42] for the j = d − 2 case, and
was later rediscovered/generalized by Dumitrescu, Mitchell, and Sharir [24]. The lemma in the
above form was also stated as Lemma 4.6 in [7], except for the last sentence. Upon examination of
the proof, we see that this grid-like construction consists of d rounds where the i-th round makes
hyperplane cuts orthogonal to the i-th axis; thus, it forms an MSP tree with height d. More
precisely, here is a brief redescription of the proof presented in [7]:

Vertically project the input onto the first d − 1 dimensions and construct the partition by
induction. Then lift each cell to get a vertical column γ along the d-th dimension. Partition
γ with O(r) cuts using hyperplanes orthogonal to the d-th axis, so that the number of i-flats
orthogonal to the d-th axis and intersecting each subcell is a factor of r less than that for γ, for
each i ∈ {0, . . . , d− 1}. Clearly, the total number of subcells in this construction is O(rd), and the
total number of rounds of hyperplane cuts is indeed d.

Let n
(d)
i be the maximum number of i-flats intersecting each subcell in this d-dimensional

construction. If an i-flat f is not orthogonal to the d-th axis, the vertical projection of f is an
(i− 1)-flat. If f is orthogonal to the d-th axis, the vertical projection of f is an i-flat. We therefore
have

n
(d)
i ≤ n

(d−1)
i−1 +

n
(d−1)
i

r
.

With the trivial base cases, it follows by induction that n
(d)
i = O(n/rd−i).

15

Algorithm outline. Given a cell ∆, we construct an orthogonal MSP tree inside ∆ as follows:

1. divide ∆ into subcells by applying Lemma 3.3 to the flats through the faces
of S intersecting ∆

2. divide each subcell into subsubcells by the (d− 1)-faces of S that completely
cut across the subcell (these are free cuts)

3. recursively build an orthogonal MSP tree inside each subsubcell

Analysis. The number of subsubcells is trivially bounded by nrO(1). Let ni be the number of
boxes intersecting the i-th subsubcell. Then maxi ni = O(n/r2), since the number of (d − 2)-
faces intersecting each subcell is O(n/r2) by Lemma 3.3, and each box intersecting a subsubcell
contributes to a (d − 2)-face intersecting the subsubcell after the free cuts. Furthermore,

∑
i ni =

O(rd · n/r2), since each box can intersect at most one subsubcell of each subcell, and there are
O(rd) subcells.

Line 1 adds O(1) to the height. Line 2 adds just 1 to the height, because the free cuts of each
subcell must be orthogonal to the same direction.

The recurrences for the number of leaves W (n) and the height H(n) of the MSP tree are then
given by

W (n) ≤
∑
i

W (ni) + nrO(1) and H(n) ≤ max
i
H(ni) +O(1)

for some ni’s with maxi ni = O(n/r2) and
∑
i ni = O(rd ·n/r2). (Informally, the critical case occurs

when there are rd subproblems all with ni = O(n/r2).)

To solve the W (n) recurrence, observe that
∑
i n

d/2
i ≤ O((n/r2)d/2−1)

∑
i ni = O((n/r2)d/2−1 ·

rd · n/r2) = O(nd/2). We choose r = nε for a sufficiently small constant ε > 0. The nrO(1)

cost is smaller than nd/2, and so the total cost at the j-th level of the recursion tree can be
bounded by 2O(j)nd/2. For this choice of r, the recursion has O(lg lg n) levels. Hence, W (n) =
O(nd/22O(lg lgn)) = O(nd/2 lgO(1) n). We then also have H(n) = O(lg lg n). By Lemma 3.2, we
obtain an orthogonal BSP tree with height (d/2) lg n + O(lg lg n) and thus a data structure that
can answer point location queries in (d/2) lg n+O(lg lg n) comparisons.

Theorem 3.4. Given n interior-disjoint axis-parallel boxes in a constant dimension d ≥ 3, we can
build a data structure so that we can locate the box containing a query point in (d/2) lg n+O(lg lg n)
comparisons.

3.4 Point Location for Box Subdivisions in d ≥ 3 Dimensions

For the case of disjoint boxes that are space-filling, i.e., that form a spatial subdivision, we can
improve the upper bound further. The extra ingredient is provided by a subroutine of Hershberger,
Suri, and Tóth [30]:

Lemma 3.5. In the special case of a box subdivision S inside a cell ∆ where no (d − 3)-faces

intersect the interior of ∆, there is an orthogonal MSP tree for S with n2O(
√

lgn) leaves and height
O(
√

lg n).

Proof. This special case was addressed in Lemma 3.4 (for d = 3) and Lemma 5.1 (for general
d) in Hershberger, Suri, and Tóth’s paper [30]. They only stated the existence of a BSP tree
with size O(n). Specifically, they proved the existence of a series of free cuts after which the

16

subproblems become two-dimensional (i.e., the subdivisions are liftings of 2D subdivisions). For
these 2D subdivisions, we can switch to Seidel and Adamy’s method (in Section 3.2) to get MSP

subtrees of total size n2O(
√

lgn) and height O(
√

lg n). Upon close examination of their proof, we see
that the series of free cuts are all orthogonal to a common direction; thus, they add just 1 to the
height of the MSP tree. More precisely, here is a brief reinterpretation of their proof (the original
proof uses induction, which we find it clearer to avoid):

Let ∆ = [0, 1]d. We are given a box subdivision where no (d− 3)-faces intersect the interior of
∆. Thus, each box can be written in the form {ai ≤ xi ≤ bi, aj ≤ xj ≤ bj} for some ai, bi, aj , bj ;
we say that the box is of type ij. (For boxes of the form {ai ≤ xi ≤ bi}, we can arbitrarily pick an
index j 6= i and set aj = 0, bj = 1.)

The types of all the given boxes can be viewed as edges of a graph G, with the indices {1, . . . , d}
as vertices.

We claim that every two edges in G must share a common vertex: If this were not true, there
would be two boxes of types ij and i′j′ for distinct indices i, j, i′, j′. The interiors of the two boxes
contain two (d − 2)-flats {xi = ci, xj = cj} and {xi′ = ci′ , xj′ = cj′} for some ci, cj , ci′ , cj′ ∈ (0, 1).
But then the pair would intersect at xi = ci, xj = cj , xi′ = ci′ , xj′ = cj′ .

It is not difficult to see that the only possible graphs satisfying the property that every two
edges are adjacent are (i) a triangle, and (ii) a star.

Suppose that G is a triangle, say, 123. We show that this is not possible. Consider three boxes of
types 12, 23, and 31. The interiors of these three boxes contain three (d−2)-flats {x1 = c1, x2 = d2},
{x2 = c2, x3 = d3}, and {x3 = c3, x1 = d1} for some c1, c2, c3, d1, d2, d3 ∈ (0, 1). Because the boxes
are space-filling, a point at x1 = c1, x2 = c2, x3 = c3 must be covered by some box. By symmetry,
we may assume that this box is of type 12; it contains the (d− 2)-flat {x1 = c1, x2 = c2}. But then
{x1 = c1, x2 = c2} and {x2 = c2, x3 = d3} would intersect at x1 = c1, x2 = c2, x3 = d3.

From now on, suppose that G is a star, i.e., all edges are incident to a common vertex, say, 1.
Sweep space using a hyperplane h = {x1 = t} for some value t representing time.

We claim that at any time, h can hit the interiors of boxes of only one type: If this were not
true, h would hit the interiors of two boxes of type 1j and 1j′ for some j 6= j′. The interior of these
boxes contain two (d − 2)-flats {x1 = t, xj = cj} and {x1 = t, xj′ = cj′} for some cj , cj′ ∈ (0, 1).
But then the pair would intersect at x1 = t, xj = cj , xj′ = cj′ .

During the sweep, we will make a hyperplane cut at h whenever the box type hit by h changes.
(This is a free cut.) Then all these hyperplane cuts are indeed orthogonal to a common direction,
namely x1. Furthermore, between two hyperplane cuts, there are boxes of only one type 1j for
some j, and these are liftings of a 2D subdivision along the x1 and xj axes.

Algorithm outline. We follow the same algorithm outline as in Section 3.3, except for an extra
base case: when no (d− 3)-faces intersect the interior of a cell ∆, we build an orthogonal MSP tree
directly by Lemma 3.5.

Analysis. As before, the number of subsubcells is trivially bounded by nrO(1). Let ni be the
number of boxes intersecting the i-th subsubcell. As before,

∑
i ni = O(rd · n/r2).

Let m be the number of (d − 3)-faces intersecting the interior of ∆, and mi be the number of
(d − 3)-faces intersecting the interior of the i-th subsubcell. A direct application of Lemma 3.3
implies that maximi = O(n/r3), but if we duplicate each (d − 3)-flat dn/me times first before

17

applying Lemma 3.3, the number of flats remains O(n) and we get maximi = O((n/r3)/(n/m)) =
O(m/r3).

The recurrences for the number of leaves and the height of the MSP tree become

W (n,m) ≤
∑
i

W (ni,mi) + nrO(1) and H(n,m) ≤ max
i
H(ni,mi) +O(1)

for some ni’s and mi’s with maximi = O(m/r3) and
∑
i ni = O(rd · n/r2). (Informally, the critical

case occurs when there are O(rd) subproblems all with ni = O(n/r2) and mi = O(m/r3).)

Lemma 3.5 provides the base case W (n, 0) ≤ n2O(
√

lgn) and H(n, 0) = O(
√

lg n).

To solve the W (n) recurrence, observe that
∑
i nim

(d−2)/3
i ≤ O((m/r3)(d−2)/3 · rd · n/r2) =

O(nm(d−2)/3). We choose r = mε. The nrO(1) or n2O(
√

lgn) cost is smaller than nm(d−2)/32O(
√

lgn),

and so the total cost at the j-th level of the recursion tree can be bounded by 2O(j)nm(d−2)/32O(
√

lgn).

For this choice of r, the recursion hasO(lg lgm) levels. Hence, W (n,m) ≤ nm(d−2)/32O(lg lgm+
√

lgn).

We also have H(n,m) = O(lg lgm +
√

lg n). So, W (n, n) ≤ n(d+1)/32O(
√

lgn) and H(n, n) =
O(
√

lg n). By Lemma 3.2, we obtain an orthogonal BSP tree with height ((d+1)/3) lg n+O(
√

lg n)
and thus a data structure that can answer point location queries in ((d+1)/3) lg n+O(

√
lg n) com-

parisons.

Theorem 3.6. Given a subdivision of space into n interior-disjoint axis-parallel boxes in a constant
dimension d ≥ 3, we can build a data structure so that we can locate the box containing a query
point in ((d+ 1)/3) lg n+O(

√
lg n) comparisons.

Remarks. The space usage of our data structures is very high: O(nd/2 logO(1) n) for disjoint boxes

and O(n(d+1)/32O(
√

lgn)) for box subdivisions. In the further special case of a box subdivision that
is itself a BSP (but possibly unbalanced), i.e., a subdivision formed by the leaf cells of a BSP, we
can adopt an approach from [8, Section 4.2] of using tree separators, to reduce space to O(n) while
almost preserving the query complexity, as we now briefly outline:

We find r edges of the underlying BSP tree whose removal results in O(n/r) subtrees. We
consider O(r) boxes corresponding to the O(r) roots of these subtrees, and form a subdivision R of
O(r) size from these boxes; we can in fact make R a BSP. We build a point-location data structure
for R with space S0(O(r)) and query cost Q0(O(r)), and inside each leaf cell of R of size ni, we
build a point-location data structure with space S1(ni) and query cost Q1(ni). We then obtain
a new point-location data structure with space S(n) ≤

∑
i S1(ni) + S0(O(r)) and the query cost

Q(n) ≤ maxiQ1(ni) +Q0(O(r)) for some ni’s with
∑
i ni ≤ n and maxi ni ≤ O(n/r).

For example, we can set S0(O(r)) = rO(1) and Q0(O(r)) ≤ ((d + 1)/3) lg r + O(
√

lg r), and
replace S1, Q1 with S,Q by recursion. Then the recurrences yield S(n) ≤ rO(1)n lg n and Q(n) ≤
((d+ 1)/3) lg n+O(lg n/

√
lg r).

Next, we can set S0(O(r)) ≤ bO(1)r lg r and Q0(O(r)) ≤ ((d + 1)/3) lg r + O(lg r/
√

lg b), and
set S1(ni) ≤ O(ni) and Q1(ni) ≤ O(lg ni) [8], and set r = n/(bO(1) lg n) and lg b ≈ lg2/3 n. Then
S(n) = O(n) and Q(n) ≤ ((d+ 1)/3) lg n+O(lg2/3 n).

Theorem 3.7. Given an orthogonal BSP with n leaf boxes in a constant dimension d ≥ 3, we can
build a data structure with O(n) space so that we can locate the leaf box containing a query point
in ((d+ 1)/3) lg n+O(lg2/3 n) comparisons.

18

4 Open Problems

Our results open up a plethora of interesting questions:

• Can the d-dimensional maxima problem be solved using better than dn log n comparisons for
d ≥ 4? (Note that here, running time may not correlated with the number of comparisons, as
currently the best algorithm for d-dimensional maxima has running time O(n logd−3 n) [10].)

• What is the complexity of the counting version of the orthogonal line segment intersection
problem as a function of n (independent of k)?

• What is the best deterministic bound on the number of comparisons for 3D maxima or 2D
orthogonal segment intersection detection?

• Is there an algorithm for 3D convex hulls that uses n lg h+ o(n lg h) comparisons or predicate
tests?

• Can one prove optimality of the lower-order terms for any of our results?

• Is the O(
√

log n) lower-order term in Seidel and Adamy’s result optimal for 2D orthogonal
point location? (Their lower bound was proved only for a restricted setting in which all
horizontal cuts are made by input segments completely crossing a cell.)

• Can one prove a lower bound for point location in d-dimensional disjoint boxes with a constant
factor that converges to infinity as a function of d?

There are countless other geometric problems one could study regarding constant factors. Some
specific examples include (deterministic) linear programming in 2D, L∞-nearest neighbor search in
3D, bichromatic L∞-closest pair in 3D, and (linear-time) triangulation or vertical decomposition
of orthogonal polygons in 2D.

References

[1] P. Afshani, J. Barbay, and T. M. Chan. Instance-optimal geometric algorithms. In Proc. 50th Annu.
IEEE Sympos. Found. Comput. Sci., pages 129–138, 2009.

[2] S. Arya, T. Malamatos, D. M. Mount, and K. C. Wong. Optimal expected-case planar point location.
SIAM J. Comput., 37:584–610, 2007.

[3] M. Ben-Or. Lower bounds for algebraic computation trees. In Proc. 15th Annu. ACM Sympos. Theory
Comput., pages 80–86, 1983.

[4] J. L. Bentley and T. A. Ottmann. Algorithms for reporting and counting geometric intersections. IEEE
Trans. Comput., C-28(9):643–647, 1979.

[5] T. M. Chan. Optimal output-sensitive convex hull algorithms in two and three dimensions. Discrete
Comput. Geom., 16:361–368, 1996.

[6] T. M. Chan. Output-sensitive results on convex hulls, extreme points, and related problems. Discrete
Comput. Geom., 16:369–387, 1996.

[7] T. M. Chan. Klee’s measure problem made easy. In Proc. 54th Annu. IEEE Sympos. Found. Comput.
Sci., pages 410–419, 2013.

19

[8] T. M. Chan. Persistent predecessor search and orthogonal point location on the word RAM. ACM
Trans. Algorithms, 9(3):22, 2013.

[9] T. M. Chan and E. Y. Chen. Multi-pass geometric algorithms. Discrete Comput. Geom., 37:79–102,
2007.

[10] T. M. Chan, K. G. Larsen, and M. Pǎtraşcu. Orthogonal range searching on the RAM, revisited. In
Proc. 27th Annu. ACM Sympos. Comput. Geom., pages 1–10, 2011.

[11] T. M. Chan and M. Pǎtraşcu. Transdichotomous results in computational geometry, I: Point location
in sublogarithmic time. SIAM J. Comput., 39:703–729, 2009.

[12] T. M. Chan, J. Snoeyink, and C. K. Yap. Primal dividing and dual pruning: Output-sensitive construc-
tion of 4-d polytopes and 3-d Voronoi diagrams. Discrete Comput. Geom., 18:433–454, 1997.

[13] B. Chazelle and D. P. Dobkin. Intersection of convex objects in two and three dimensions. J. ACM,
34(1):1–27, January 1987.

[14] B. Chazelle, H. Edelsbrunner, L. J. Guibas, and M. Sharir. Algorithms for bichromatic line segment
problems and polyhedral terrains. Algorithmica, 11:116–132, 1994.

[15] B. Chazelle and J. Matoušek. Derandomizing an output-sensitive convex hull algorithm in three dimen-
sions. Comput. Geom. Theory Appl., 5:27–32, 1995.

[16] K. L. Clarkson. New applications of random sampling in computational geometry. Discrete Comput.
Geom., 2:195–222, 1987.

[17] K. L. Clarkson. More output-sensitive geometric algorithms. In Proc. 35th Annu. IEEE Sympos. Found.
Comput. Sci., pages 695–702, 1994.

[18] K. L. Clarkson and P. W. Shor. Applications of random sampling in computational geometry, II.
Discrete Comput. Geom., 4:387–421, 1989.

[19] W. Cunto and J. I. Munro. Average case selection. J. ACM, 36:270–279, 1989.

[20] D. P. Dobkin and R. J. Lipton. On the complexity of computations under varying sets of primitives. J.
Comput. Syst. Sci., 18:86–91, 1979.

[21] D. Dor and U. Zwick. Selecting the median. SIAM J. Comput., 28:1722–1758, 1999.

[22] D. Dor and U. Zwick. Median selection requires (2 + ε)n comparisons. SIAM J. Discrete Math.,
14:312–325, 2001.

[23] T. Dubé. Dominance range-query: The one-reporting case. In Proc. 9th Annu. ACM Sympos. Comput.
Geom., pages 208–217, 1993.

[24] A. Dumitrescu, J. S. B. Mitchell, and M. Sharir. Binary space partitions for axis-parallel segments,
rectangles, and hyperrectangles. Discrete Comput. Geom., 31:207–227, 2004.

[25] J. Ford, R. Lester, and S. M. Johnson. A tournament problem. Amer. Math. Monthly, 66:387–389,
1959.

[26] G. N. Frederickson and D. B. Johnson. The complexity of selection and ranking in X +Y and matrices
with sorted rows and columns. J. Comput. Syst. Sci., 24:197–208, 1982.

[27] M. J. Golin. A provably fast linear-expected-time maxima-finding algorithm. Algorithmica, 11:501–524,
1994.

[28] G. H. Gonnet and J. I. Munro. Heaps on heaps. SIAM J. Comput., 15:964–971, 1986.

[29] R. L. Graham. An efficient algorithm for determining the convex hull of a finite planar set. Inform.
Process. Lett., 1:132–133, 1972.

20

[30] J. Hershberger, S. Suri, and C. D. Tóth. Binary space partitions of orthogonal subdivisions. SIAM J.
Comput., 34:1380–1397, 2005.

[31] R. A. Jarvis. On the identification of the convex hull of a finite set of points in the plane. Inform.
Process. Lett., 2:18–21, 1973.

[32] K. Kaligosi, K. Mehlhorn, J. I. Munro, and P. Sanders. Towards optimal multiple selection. In Proc.
32nd Int. Colloq. Automata, Languages and Programming, volume 3580 of Lecture Notes Comput. Sci.,
pages 103–114. Springer-Verlag, 2005.

[33] D. G. Kirkpatrick and R. Seidel. Output-size sensitive algorithms for finding maximal vectors. In Proc.
1st Annu. ACM Sympos. Comput. Geom., pages 89–96, 1985.

[34] D. G. Kirkpatrick and R. Seidel. The ultimate planar convex hull algorithm? SIAM J. Comput.,
15:287–299, 1986.

[35] D. E. Knuth. Sorting and Searching, volume 3 of The Art of Computer Programming. Addison-Wesley,
Reading, MA, 1973.

[36] H. T. Kung, F. Luccio, and F. P. Preparata. On finding the maxima of a set of vectors. J. ACM,
22:469–476, 1975.

[37] Z. Li and B. A. Reed. Heap building bounds. In Proc. 9th Workshop Algorithms Data Struct., volume
3608, pages 14–23. Springer-Verlag, 2005.

[38] G. Liotta, F. P. Preparata, and R. Tamassia. Robust proximity queries: An illustration of degree-driven
algorithm design. SIAM J. Comput., 28(3):864–889, 1998.

[39] K. Mehlhorn. Data Structures and Algorithm 1: Sorting and Searching, volume 1 of EATCS Monographs
on Theoretical Computer Science. Springer-Verlag, Berlin/Heidelberg, Germany, 1981.

[40] K. Mulmuley. Computational Geometry: An Introduction Through Randomized Algorithms. Prentice
Hall, Englewood Cliffs, NJ, 1993.

[41] T. Ottmann, S. Schuierer, and S. Soundaralakshmi. Enumerating extreme points in higher dimensions.
In Proc. 12th Sympos. Theoret. Aspects Comput. Sci., volume 900 of Lecture Notes Comput. Sci., pages
562–570. Springer-Verlag, 1995.

[42] M. H. Overmars and C.-K. Yap. New upper bounds in Klee’s measure problem. SIAM J. Comput.,
20:1034–1045, 1991.

[43] M. S. Paterson and F. F. Yao. Optimal binary space partitions for orthogonal objects. J. Algorithms,
13:99–113, 1992.

[44] F. P. Preparata. A new approach to planar point location. SIAM J. Comput., 10(3):473–482, 1981.

[45] F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer-Verlag, 1985.

[46] R. Seidel and U. Adamy. On the exact worst case complexity of planar point location. J. Algorithms,
37:189–217, 2000.

[47] C. D. Tóth. Binary space partitions: Recent developments. In Combinatorial and Computational
Geometry, volume 52 of MSRI Publications, pages 525–552. Cambridge University Press, 2005.

[48] P. van Emde Boas. On the Ω(n log n) lower-bound for convex hull and maximal vector determination.
Inform. Process. Lett., 10:132–136, 1980.

21

A Appendix: Lower Bounds

Kirkpatrick and Seidel [34, 33] proved an Ω(n lg h) lower bound for the 2D convex hull and 2D
maxima problem (the version in which the output need not be in sorted order) in the algebraic com-
putation tree model by using Ben-Or’s technique [3]. Ben-Or’s technique also implies an Ω(n lg n)
lower bound for the orthogonal line segment intersection detection problem. The technique has
hidden constant factors, however.

In this section, we note that for 2D maxima and orthogonal segment intersection detection,
the hidden constant factor in the lower bounds can be made equal to 1 in the linear decision tree
model, where a comparison refers to testing the sign of a linear combination of the input values.
Although the model is not as powerful as higher-degree algebraic decision trees, it permits ordinary
comparisons between two input coordinates, which are what this paper focuses on anyway. For
linear decision trees, a simpler technique [20, 48] suffices. The main observation is that cells in a
linear decision tree are intersections of halfspaces and are thus convex.

Maxima in 2D. Let F consist of all functions f : {1, . . . , n} → {1, . . . , h} such that f(1), . . . , f(h)
is a permutation of {1, . . . , h}. Given f ∈ F , define Sf be the sequence of n points where the i-th
point is (f(i)− εi,−f(i)− εi). Then Sf has exactly h maximal points, namely the first h points.

Suppose that the two inputs Sf and Sg (f, g ∈ F) end up in the same leaf cell of the decision
tree. Imagine moving the point positions from Sf to Sg linearly. At any moment in time, the input
point sequence belongs to the same leaf cell, by convexity. The i-th point can only move along the
line {(t− εi,−t− εi) : t ∈ R}.

For i, j ∈ {1, . . . , h}, the i-th and j-th point cannot change order, for otherwise one of these
two points would not be maximal at some moment in time. Thus, f(1) = g(1), . . . , f(h) = g(h).
In particular, the staircase of the first h points stays unmoved.

For i ∈ {h + 1, . . . , n}, the i-th point cannnot cross this staircase, for otherwise the set of
maximal points would change (assuming a sufficiently small ε > 0). Thus, f(i) = g(i).

We conclude that the inputs Sf over all f ∈ F must lie in distinct leaf cells. Consequently,
the number of leaf cells is at least |F | = h!hn−h, and the height of the decision tree is at least
lg |F | = n lg h−O(h).

In fact, the average depth over |F | distinct leaves in the decision tree is at least lg |F |. It
follows that the expected number of comparisons on the input Sf for a random f ∈ F is at
least n lg h − O(h). By Yao’s principle, this gives the same expected lower bound for randomized
algorithms.

Theorem A.1. Any algorithm that computes the h maxima of a set of n points in two dimensions
requires at least n lg h−O(h) worst-case expected number of comparisons under the linear decision
tree model.

Orthogonal line segment intersection detection. Let F consist of all pairs f = (fv, fh) where
fv, fh : {1, . . . n/2} → {1, . . . , n/2} are bijections. Given f ∈ F , define Sf to be a sequence of n/2
vertical and n/2 horizontal line segments where the i-th vertical segment has endpoints (f(i),−1)
and (f(i), 1) and the i-th horizontal segment has endpoints (f(i)+1/3, 0) and (f(i)+2/3, 0). Then
Sf has no intersections.

Suppose that the two inputs Sf and Sg (f, g ∈ F) end up in the same leaf cell of the decision
tree. Imagine moving the coordinates of the segments from Sf to Sg linearly. At any moment in

22

time, the input point sequence belongs to the same leaf cell, by convexity. Each segment can only
move horizontally. The segments cannot change x-order, for otherwise the input would have to
change from no to yes at some moment in time. We thus have f = g.

We conclude that the inputs Sf over all f ∈ F must lie in distinct leaf cells. Consequently,
the number of leaf cells is at least |F | = (n/2)!2, and the height of the decision tree is at least
lg |F | = n lg n−O(n).

As before, we also obtain the same expected lower bound for randomized algorithms.

Theorem A.2. Any algorithm that detects the existence of an intersection for a two-dimensional
set of n line segments, each vertical or horizontal, requires at least n lg n−O(n) worst-case expected
number of comparisons under the linear decision tree model.

23

