
An Optimal Randomized Algorithm for Maximum Tukey Depth

Timothy M. Chan∗

Abstract

We present the first optimal algorithm to compute the

maximum Tukey depth (also known as location or halfspace

depth) for a non-degenerate point set in the plane. The

algorithm is randomized and requires O(n log n) expected

time for n data points. In a higher fixed dimension d ≥ 3, the

expected time bound is O(nd−1), which is probably optimal

as well. The result is obtained using an interesting variant of

the author’s randomized optimization technique, capable of

solving “implicit” linear-programming-type problems; some

other applications of this technique are briefly mentioned.

1 Introduction

1.1 Problem statement. Given a set P of n points
in IRd, the Tukey depth of a point q ∈ IRd is defined as:

min{|P ∩ γ| : over all halfspaces γ containing q}.

We are interested in finding a Tukey median, that is, a
point q ∈ IRd with the largest Tukey depth.

1.2 Motivation. Notions of depths for point data
sets are important in statistical analysis. The above
definition (also called location depth, data depth, and
halfspace depth) is among the most well-known and
was popularized by John Tukey [47], who suggested
using the corresponding depth contours (boundaries of
regions of all points with equal depth) to visualize data.
A Tukey median can serve as a point estimator for the
data set (a “center”) which is robust against outliers,
does not rely on distances, and is invariant under affine
transformations [41, 42, 45].

Because of the applications to statistics, the issue
of designing efficient algorithms to find Tukey medians
and their relatives—for example, a point with maximum
Liu/simplicial depth, minimum Oja depth, or maximum
convex-layers/peeling depth, and a line or flat with
maximum regression depth—has attracted a great deal
of attention from researchers in computational geometry
[2, 3, 5, 25, 28, 29, 30, 31, 37]. The topic has even led to
a DIMACS workshop recently. The goal of the present

∗School of Computer Science, Univ. of Waterloo, Waterloo,

Ontario N2L 3G1, Canada, tmchan@uwaterloo.ca. This work has

been supported in part by an NSERC Research Grant.

paper is to determine the computational complexity for
the most basic such problem.

1.3 Previous results. For dimension d = 1, the
Tukey median problem obviously corresponds to the
standard median and can therefore be solved in O(n)
time [19]; the maximum depth here is exactly dn/2e.

For higher d, the maximum Tukey depth is between
dn/(d+ 1)e and dn/2e; the lower bound here can be
proved by Helly’s theorem. In the geometry literature,
a point with depth at least dn/(d+ 1)e is referred to
as a centerpoint. The first nontrivial algorithmic result
for d = 2, by Cole et al. [18], was stated in terms of
centerpoints: they showed that a centerpoint can be
found in O(n log5 n) time, using a two-level application
of parametric search [35]. Cole’s refined parametric-
search technique [17] subsequently reduced the time
bound to O(n log3 n). Later, an O(n)-time algorithm
for centerpoints in the plane was discovered by Jadhav
and Mukhopadhyay [27], using a clever prune-and-
search approach. This does not solve the Tukey median
problem, however.

In 1991, Matoušek [32] described an algorithm
that can decide whether the maximum Tukey depth
is at least a given value k in O(n log4 n) time, using
also a two-level parametric search as a subroutine.
His algorithm actually constructs the entire depth-k
contour (the region of all points at depth at least k).
Consequently, a binary search in k yields the maximum
Tukey depth and a Tukey median in O(n log5 n) time.

Matoušek’s result has remained unsurpassed, until
recently. In 2000, Langerman and Steiger [29] obtained
a faster decision algorithm with an O(n log3 n) running
time by using an alternative to parametric search; this
algorithm does not construct the depth contour. The
additional binary search then leads to an O(n log4 n)
time bound for Tukey median. Subsequently, Langer-
man and Steiger [31] showed that the Tukey me-
dian problem itself can be solved in O(n log3 n) time.
Some extra logarithmic factors seem inherent in their
approach, because of its binary-search-like behavior.
There is an Ω(n log n) lower bound on the time com-
plexity for computing the maximum Tukey depth (or
deciding whether the maximum depth is at least k, or
testing the depth value of just a single point q, or find-

ing a Tukey median that is extreme along a given di-
rection) [3, 29]. We conjecture that the Ω(n log n) lower
bound holds for finding an arbitrary Tukey median as
well.

Extensions of the algorithms to d = 3 were also dis-
cussed in some of the previous papers, with more loga-
rithmic factors in the running time. For example, with
a three-level parametric search, Cole et al.’s centerpoint
algorithm [17] now takes time O(n2 log7 n), or by Cole’s
refinement, O(n2 log4 n) [17]. Another O(n2 polylog n)
algorithm was apparently given by Naor and Sharir [38].

Note that the problem is difficult because of our
insistence on using exact depth values. Approximate
versions of the problem can be solved considerably more
quickly; for example, see [14, 32].

1.4 New results. For d = 2, we show that theoreti-
cally a faster decision algorithm is possible by random-
ization: we can decide whether the maximum depth is
at least a given value k in O(n log n) expected time (as-
suming non-degeneracy of the input). Our algorithm
does not construct the entire depth-k contour, but it
can find a point of depth at least k that is extreme along
any given direction. The algorithm is based on a gener-
alization of the author’s randomized optimization tech-
nique [7]. This generalized technique is interesting in its
own right, as it can deal with certain LP-type problems
where the constraints are too numerous to write down
and are instead specified “implicitly”.

By binary search in k, the maximum Tukey depth
can now be computed in O(n log2 n) expected time. We
show that the binary search can also be avoided, by the
generalized randomized optimization technique again.
We thus have a randomized O(n log n)-time algorithm
for computing the maximum Tukey depth and a Tukey
median. In view of the aforementioned lower bound
(which holds for randomized algorithms), the result is
optimal, at least if the maximum Tukey depth value is
desired.

Our algorithm in fact works for any fixed dimension
d ≥ 3 and requires O(nd−1) expected time. As the
problem of detecting affine degeneracies (the existence
of d points on a common hyperplane) among n points in
IRd−1 is believed to require Ω(nd−1) time [24] and can
be reduced to computing the maximum Tukey depth in
IRd, our result is likely to be optimal for d ≥ 3 as well.
Note that as a byproduct, we get an improved O(n2)-
time randomized algorithm for centerpoints in IR3.

2 A Randomized Optimization Technique for
Implicit LPs

In this section, we present general tools that are of
interest not just to the Tukey depth problem.

2.1 The original technique. Several years ago,
the author [7] identified a simple lemma thatcan sur-
prisingly be used to solve many geometric optimization
problems. As in the popular parametric-search tech-
nique [1, 35], the strategy is to solve the decision prob-
lem first (requirement 1): decide whether the optimal
value is at least a given value. Once a decision algorithm
is found, an algorithm for the optimization problem can
usually be obtained by following a general “recipe”, even
if the values are real numbers (where an ordinary binary
search is not applicable).

In the parametric-search recipe, an efficient parallel
version of the decision algorithm (or another algorithm
with appropriate characteristics) is usually required; the
transformed algorithm is not only slower by some poly-
logarithmic factor but also quite complicated (some-
times un-implementable!). The novelty of the lemma
below is requirement 2: if this particular condition is
met for the problem at hand, not only can these compli-
cations be bypassed by a simpler randomized algorithm
(which uses the decision algorithm only as a black box),
but the resulting algorithm is also faster and has no
logarithmic-factor slow-down. Requirement 2 is similar
to the design of prune-and-search algorithms (forming
subproblems of size a fraction less), but unlike tradi-
tional prune-and-search, we do not need to know a pri-
ori which subproblem defines the optimal solution.

Lemma 2.1. [7] Let α < 1 and r be fixed constants.
Suppose f : P → IR is a function that maps inputs to
real values, with the following properties:

0. For any input P ∈ P of constant size, f(P) can be
computed in constant time;

1. For any input P ∈ P of size n and any t ∈ IR, we
can decide whether f(P) ≥ t in time D(n);

2. For any input P ∈ P of size n, we can construct
inputs P1, . . . , Pr ∈ P each of size at most dαne, in
time no more than D(n), such that

f(P) = min{f(P1), . . . , f(Pr)}.

Then for any input P ∈ P of size n, we can compute
f(P) in O(D(n)) expected time, assuming that D(n)/nε

is monotone increasing.

The proof [7] follows from the well-known fact [19]
that the standard way to compute the minimum of r
numbers, if randomized, requires O(r) comparisons but
only O(log r) expected number of “evaluations”. The
algorithm uses this fact recursively.

2.2 LP-type problems. Randomized techniques
had been discovered earlier for a special class of geo-
metric optimization problems that share properties (as
defined below) enjoyed by linear and convex program-
ming. Problems in this class can be solved in linear time
for any fixed dimension, by simple algorithms [43, 44].

Definition 2.2. Let w : 2H → W be a function that
maps sets of constraints (members of H) to values in
a totally ordered set W. We say that w is LP-type of
dimension at most d if the following properties hold for
all sets H ⊆ H and all constraints h ∈ H:

(i) w(H) = w(B) for some B ⊆ H of size at most d.

(ii) w(H ∪ {h}) ≥ w(H).

(iii) Suppose w(H) = w(B) with B ⊆ H. Then
w(H ∪ {h}) = w(H)⇐⇒ w(B ∪ {h}) = w(B).

We call a set B of size at most d a basis, and if (i)
is obeyed, a basis for H. If w(B ∪ {h}) = w(B), we say
that B satisfies h. More generally, if w(B∪H) = w(B),
B satisfies H. Primitive operations that algorithms
may use include basis evaluation (computing w(B) for
a basis B) and satisfaction/violation test (determining
if a basis B satisfies or violates a constraint h).

It can be shown from the definition that if w is
LP-type, then the modified function w : 22

H → W
with w({H1, . . . , Hn}) := w(H1 ∪ · · · ∪ Hn) is LP-
type as well, of the same dimension. If w is the
standard linear programming problem (the minimum of
a fixed linear function over the intersection of a given
set of halfspaces H), then w corresponds to a convex
programming problem.

2.3 A generalized technique. In requirement 2 of
the lemma, the subproblems are combined via the min
operator, essentially 1-dimensional linear programming.
The main observation of this section is that the min op-
erator can be replaced more generally by d-dimensional
linear programming. Parametric search can also reduce
the d-dimensional optimization problem to a satisfac-
tion/violation problem (requirement 1 without require-
ment 2), but in a more complicated multi-level or multi-
dimensional form [16, 33, 39]. This technique incurs fur-
ther polylogarithmic slow-down and does not carry over
to abstract LP-type problems, unlike the new lemma
below:

Lemma 2.3. Let w : 2H → W be an LP-type function
of constant dimension d and let α < 1 and r be fixed
constants. Suppose f : P → 2H is a function that
maps inputs to sets of constraints, with the following
properties:

0. For inputs P1, . . . , Pd ∈ P of constant size, a basis
for f(P1)∪ · · · ∪f(Pd) can be computed in constant
time;

1. For any input P ∈ P and any basis B, we can
decide whether B satisfies f(P) in time D(n);

2. For any input P ∈ P, we can construct inputs
P1, . . . , Pr ∈ P each of size at most dαne, in time
no more than D(n), such that

f(P) = f(P1) ∪ · · · ∪ f(Pr).

Then we can compute a basis for f(P) in O(D(n))
expected time, assuming that D(n)/nε is monotone
increasing.

Proof. We describe a recursive algorithm that, given d
inputs P1, . . . , Pd each of size at most n, compute a basis
for f(P1)∪· · ·∪f(Pd). The base case can be taken care of
by requirement 0. By requirement 2, we can form inputs
Q1, . . . , Qdr each of size at most dαne, and reduce the
problem to computing a basis for f(Q1) ∪ · · · ∪ f(Qdr),
or in terms of the modified LP-type function w, a
basis for the set of dr elements {f(Q1), . . . , f(Qdr)}.
The standard randomized incremental algorithm for
LP-type problems [44] finds the solution using a linear
(O(r)) expected number of satisfaction/violation tests
and a polylogarithmic (O(logd r)) expected number of
basis evaluations for w. (In fact, a weighted sampling
algorithm by Clarkson [12] uses only O(log r) basis
evaluations.) The satisfaction tests can be handled
by requirement 1 and the basis evaluations can be
performed by recursive calls. As a result, we have the
following recurrence for the expected running time:

T (n) = c logd r T (dαne) +O(rD(n)),

for some constant c that depends only on d. This
recurrence is in the standard “master” form [19] and
solves to T (n) = O(D(n)), provided that

log(c logd r)/ log(1/α) < ε.

If this inequality is not true, it can be made true by
replacing α with α` and r with r` for a sufficiently large
constant `, since we can repeat the division procedure
in requirement 2 a total of ` times before applying the
recursive algorithm. 2

2.4 Some examples. To illustrate the versatility
of the new lemma, we briefly sketch a few applications
where some known results can be re-derived:

• The problem of answering linear programming
queries for a preprocessed set of n halfspaces in IRd

was considered by Matoušek [33], who used multi-
level parametric search to reduce the problem to de-
signing data structures for satisfaction queries (usu-
ally called membership queries).

We can obtain a simpler reduction by the generalized
lemma (similar to a reduction obtained by the origi-
nal lemma for ray shooting queries [7]): just build a
binary tree for the halfspaces and store a membership
structure at each node (preprocessing time and space
increases by at most a logarithmic factor); then re-
quirement 2 trivially holds (with r = 2 and α = 1/2)
and we get an expected query time Q(n) which co-
incides with the time for membership queries, with
no extra logarithmic factor, if Q(n)/nε is monotone
increasing.

Similar results was obtained earlier by a different
randomized method of the author [6]. The method
here uses randomization only in the query algorithm,
not the preprocessing, although the previous method
can be derandomized more effectively, as shown by
Ramos [40].

• Minimum diameter of moving points. Given n points
{pi(t)}i=1,...,n, each moving linearly in IRd, for what
the time value t is the diameter maxij ‖pi(t)− pj(t)‖
the smallest?

Gupta et al. [26] applied parametric search to get an
O(n log3 n)-time algorithm for the two-dimensional
problem. Clarkson [13] later described a randomized
O(n log n)-time algorithm in dimension d ≤ 3, but
this result can also be obtained as a corollary of the
generalized lemma: because ‖pi(t)−pj(t)‖2 is a con-
vex quadratic function in t, the problem is equivalent
to a convex program with O(n2) constraints, one for
each pair of points; requirement 2 can be met by par-
titioning the point set P into three subsets P1, P2, P3
of equal size and expressing the constraint set for P
as the union of the constraint sets for P1∪P2, P2∪P3,
and P1 ∪P3 (with r = 3 and α = 2/3). The satisfac-
tion test reduces to computing the diameter of the
point set at a fixed time, which can be accomplished
in O(n log n) time for d ≤ 3 [15].

• Inverse parametric minimum spanning trees. Epp-
stein [23] considered the following graph problem: we
have an undirected graph G(t1, . . . , td) with n ver-
tices and m edges, where the weight of each edge
is a linear function in t1, . . . , td; we are also given
a tree T ; the goal is to find parameters t1, . . . , td
(if exist) such that the minimum spanning tree of
G(t1, . . . , td) coincides with T .

This problem can also be viewed as an implicit
LP with O(mn) constraints, one for each pair of

non-tree edge e and tree edge e′, where T ∪ {e} \
{e′} is a tree (the constraint is that the weight
of e must be at least the weight of e′). In the
journal version of his paper [23], Eppstein has already
applied our randomized optimization technique to
solve the problem in linear expected time, although
he used the original lemma instead of the generalized
lemma and the solution to the decision problem was
not entirely clear.

3 Tukey Depth as an Implicit LP

We now detail the application of the new lemma to the
maximum Tukey depth problem.

3.1 Finding a point of a given depth k. Let
P be the given non-degenerate set of n points in IRd.
We first consider the problem of finding a point with
Tukey depth at least k, minimizing a linear function,
if such a point exists. That this is related to linear
programming is not surprising, because the problem
asks for an extreme point inside a halfspace intersection:

⋂
{γ : over all halfspaces γ with |P \ γ| < k}.

In the subsequent discussion, it is best to switch to
dual space [22]. Here, the linear programming problem
becomes the following: given a set S of points colored
black or white in IRd, compute

w(S) := min ϕ(h)
s.t. all black points of S are below h

all white points of S are above h

where ϕ(h) can be any linear function over the coeffi-
cients of h’s hyperplane equation.

For our problem, the dualized input becomes a non-
degenerate set H of n hyperplanes. Given any point
q ∈ IRd colored black or white, its level `H(q) refers to
the number of hyperplanes below q if black, above q if
white. Let Lk(H) denote the set of all black points of
level< k and let Uk(H) denote the set of all white points
of level < k. Our problem corresponds to computing
w(Lk(H) ∪ Uk(H)).

Although Lk(H) and Uk(H) are infinite sets, it
suffices to take only the vertices along their boundaries
(called the k-level vertices). Unfortunately, even for
dimension d = 2, the number of such vertices can be

superlinear (n2Ω(
√
log k)) [46], and currently the best

upper bound is O(nk1/3) [20]. In practice, the number
is probably smaller than this upper bound, and the
obvious approach of constructing the k-level [8] and
running a linear programming algorithm may not be as
ineffective as one thinks (at least for d = 2). To design
algorithms that are guaranteed to do well on any input,

however, we need to adopt the implicit LP approach
from the previous section.

We now state a known geometric result that enables
us to divide a problem into subproblems of size a
fraction less (requirement 2). We then demonstrate how
the problem can be solved by our randomized technique.

Lemma 3.1. (Cutting Lemma) Given n hyperplanes
in a fixed dimension d, we can cut IRd into a constant
number of simplices such that each simplex intersects at
most dαne hyperplanes for some constant α < 1. The
construction takes linear time.

Proof. This was first proved by Megiddo and Dyer [21,
36] (though the result was stated differently). For
instance, in dimension 2, this construction gives 4 cells
with α = 7/8 (which can be refined to α = 3/4 with
more work). A simple random sampling algorithm was
suggested by Clarkson [11]. The theoretically fastest
deterministic algorithm (O(rd) cells with α = 1/r) was
obtained by Chazelle [10]. 2

Theorem 3.1. Given a number k and a non-
degenerate set of n points in a fixed dimension d, we
can decide whether there exists a point of Tukey depth
at least k (and return such a point) in O(n log n+nd−1)
expected time.

Proof. We use Lemma 2.3 to solve a slight extension of
the dual problem: given a simplex ∆ and numbers a
and b, compute w(f(H,∆, a, b)), where

f(H,∆, a, b) := (Lk−a(H) ∪ Uk−b(H)) ∩∆.

We check that the requirements of the lemma can indeed
be fulfilled (ignoring the trivial base cases):

1. Given input (H,∆, a, b) of size n and a basis B,
we can decide whether B satisfies f(H,∆, a, b),
i.e., whether for the hyperplane h defined by B,
Lk−a(H)∩∆ is (completely) below h and Uk−b(H)∩
∆ above h, in the following manner.

Without loss of generality, we concentrate on the first
condition. Let ∆′ be the portion of ∆ above h. The
condition is equivalent to Lk−a(H) ∩ ∆′ = ∅, i.e.,
Lk−a(H)∩∂∆′ = ∅. We take each (d−1)-dimensional
simplex σ of ∂∆′. Testing whether Lk−a(H) ∩ σ is
empty reduces to finding a point inside all but k− a
halfspaces in (d − 1)-dimensional space (the affine
hull of σ)—the problem of “linear programming with
violations” [9, 34]. In our case (where k−a is possibly
large), a naive approach of constructing the entire
(d − 1)-dimensional arrangement [22] is best and
enough to implement the entire satisfaction test in
D(n) := O(n log n+ nd−1) time.

2. Given input (H,∆, a, b) of size n, we can form the
simplices from the cutting lemma, intersect them
with ∆, and retriangulate to partition ∆ into sim-
plices ∆1, . . . ,∆r. Then

f(H,∆, a, b) =

r⋃

i=1

f(H,∆i, a, b)

=
r⋃

i=1

f(Hi,∆i, a+ ai, b+ bi),

where Hi denotes the set of hyperplanes of H inter-
secting ∆i (of size at most dαne), and ai and bi re-
spectively denote the number of hyperplanes strictly
below ∆i and above ∆i.

The theorem thus follows. 2

Remark : As Stefan Langerman (personal communi-
cation) pointed out, our technique can speed up a
subroutine in Matoušek’s two-dimensional depth algo-
rithm (his Lemma 3.3) [32] and result in an improved
O(n log2 n) expected time bound for constructing the
entire depth-k contour. We leave open the question
of whether O(n log n) time is possible for the two-
dimensional depth contour problem.

3.2 Finding a point of maximum depth.
Having solved the problem of deciding whether the
maximum Tukey depth is at least k, we consider the
problem of computing the maximum Tukey depth. One
way is to apply the randomized optimization technique
again, this time in its original form (Lemma 2.1)—
the application is not entirely trivial (but is doable
with the help of Helly’s theorem) and results in a
“two-level” algorithm. We describe another way that
directly modifies our previous algorithm and applies the
optimization technique just once.

To this end, we consider a more general linear
programming problem, where each of the constraints
comes with a label value: maximize k such that there
exists a point inside all given halfspaces with label < k;
or in dual form, compute

w′(S) := min(−k, ϕ(h))
s.t. all black points with label < k are below h

all white points of S with label < k are above h

where the minimum is taken lexicographically. For
example, the following is a special case (where labels are
positions in a sequence): given a sequence S of linear
constraints, find the longest prefix of S whose linear
program is feasible. Curiously, this problem is LP-type
and can thus be solved in O(|S|) expected time, without
any extra logarithmic factor caused by binary search:

Observation 3.2. w′ is LP-type of dimension at most
2d+ 1.

Proof. We can check properties (i)–(iii) directly, or we
can just recognize that w′ is an instance of quasicon-
vex programming (or “quasilinear programming”?), as
defined (and shown LP-type) by Amenta et al. [4]:
Roughly, the goal is to find a point that satisfies a set
of constraints, maximizing a variable t, where each level
set (points with the same t value) of each constraint is
convex, and the level sets of each constraint are nested.
In our case, for each point q with label k, the level set
at all t > k is the dual halfspace of q, and the level set
at t ≤ k is all of IRd. 2

The maximum Tukey depth problem dualizes to
finding w′(f ′(H,∆, a, b)) for ∆ = IRd and a = b = 0,
where

f ′(H,∆, a, b) = {q ∈ ∆ in black with label `H(q) + a}
∪ {q ∈ ∆ in white with label `H(q) + b}.

Theorem 3.2. Given a non-degenerate set of n points
in a fixed dimension d, we can compute the maximum
Tukey depth (and return a Tukey median) in O(n log n+
nd−1) expected time.

Proof.

1. Deciding whether a basis satisfies f ′(H,∆, a, b) with
respect to w′ again reduces to testing, for a given hy-
perplane h and a given number k, whether Lk−a(H)∩
∆ is below h and Uk−b(H) ∩ ∆ is above h. As
in the proof of the previous theorem, this requires
D(n) = O(n log n+ nd−1) time.

2. Forming the simplices ∆i, sets Hi, and indices ai

and bi in the same fashion as in the previous proof,
we similarly have

f ′(H,∆, a, b) =

r⋃

i=1

f ′(H,∆i, a, b)

=

r⋃

i=1

f ′(Hi,∆i, a+ ai, b+ bi).

The requirements of Lemma 2.3 are thus met, and the
expected time bound is asymptotically the same. 2

Remark : It would be interesting to see whether our
technique can be made practical, considering that initial
estimates for the hidden constants seem huge.

Acknowledgements

I thank Stefan Langerman for re-posing the problem at
the 2002 Fall Workshop on Computational Geometry
problem session, and for subsequent discussions.

References

[1] P. K. Agarwal and M. Sharir. Efficient algorithms
for geometric optimization. ACM Comput. Surveys,
30:412–458, 1998.

[2] G. Aloupis, C. Cortes, F. Gomez, M. Soss, and G.
T. Toussaint. Lower bounds for computing statistical
depth. Computational Statistics and Data Analysis,
40:223–229, 2002.

[3] G. Aloupis, S. Langerman, M. Soss, and G. Tous-
saint. Algorithms for bivariate medians and a Fermat-
Torricelli problem for lines. Comput. Geom. Theory

Appl., 26:69–79, 2003.
[4] N. Amenta, M. Bern, and D. Eppstein. Optimal point

placement for mesh smoothing. J. Algorithms, 30:302–
322, 1999.

[5] M. Bern and D. Eppstein. Multivariate regression
depth. Discrete Comput. Geom., 28:1–17, 2002.

[6] T. M. Chan. Fixed-dimensional linear programming
queries made easy. In Proc. 12th ACM Sympos.

Comput. Geom., pages 284–290, 1996.
[7] T. M. Chan. Geometric applications of a randomized

optimization technique. Discrete Comput. Geom.,
22:547–567, 1999.

[8] T. M. Chan. Remarks on k-level algorithms in the
plane. Manuscript, 1999.

[9] T. M. Chan. Low-dimensional linear programming
with violations. In Proc. 43rd IEEE Sympos. Found.

Comput. Sci., pages 570–579, 2002.
[10] B. Chazelle. Cutting hyperplanes for divide-and-

conquer. Discrete Comput. Geom., 9:145–158, 1993.
[11] K. L. Clarkson. New applications of random sampling

in computational geometry. Discrete Comput. Geom.,
2:195–222, 1987.

[12] K. L. Clarkson. Las Vegas algorithms for linear and
integer programming when the dimension is small. J.

ACM, 42:488–499, 1995.
[13] K. L. Clarkson. Algorithms for the minimum diam-

eter of moving points and for the discrete 1-center
problem. Manuscript, http://cm.bell-labs.com/who
/clarkson/moving diam.html, 1997.

[14] K. L. Clarkson, D. Eppstein, G. L. Miller, C.
Sturtivant, and S.-H. Teng. Approximating center
points with iterated Radon points. Int. J. Comput.

Geom. Appl., 6:357–377, 1996.
[15] K. L. Clarkson and P. W. Shor. Applications of random

sampling in computational geometry, II. Discrete

Comput. Geom., 4:387–421, 1989.
[16] E. Cohen and N. Megiddo. Strongly polynomial-time

and NC algorithms for detecting cycles in dynamic
graphs. J. ACM, 40:791–830, 1993.

[17] R. Cole. Slowing down sorting networks to obtain
faster sorting algorithms. J. ACM, 34:200–208, 1987.

[18] R. Cole, M. Sharir, and C. K. Yap. On k-hulls and
related problems. SIAM J. Comput., 16:61–77, 1987.

[19] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C.
Stein. Introduction to Algorithms. McGraw-Hill, 2nd
ed., 2001.

[20] T. K. Dey. Improved bounds on planar k-sets and
related problems. Discrete Comput. Geom., 19:373–
382, 1998.

[21] M. E. Dyer. Linear time algorithms for two- and three-
variable linear programs. SIAM J. Comput., 13:31–45,
1984.

[22] H. Edelsbrunner. Algorithms in Combinatorial Geom-

etry. Springer-Verlag, Berlin, 1987.
[23] D. Eppstein. Setting parameters by example. SIAM J.

Comput., 82:638–653, 2003.
[24] J. Erickson. New lower bounds for convex hull prob-

lems in odd dimensions. SIAM J. Comput., 28:1198–
1214, 1999.

[25] J. Gill, W. Steiger, and A. Wigderson. Geometric
medians. Discrete Math., 108:37–51, 1992.

[26] P. Gupta, R. Janardan, and M. Smid. Fast algorithms
for collision and proximity problems involving moving
geometric objects. Comput. Geom. Theory Appl.,
6:371–391, 1996.

[27] S. Jadhav and A. Mukhopadhyay. Computing a cen-
terpoint of a finite planar set of points in linear time.
Discrete Comput. Geom., 12:291–312, 1994.

[28] M. van Kreveld, J. S. B. Mitchell, P. Rousseeuw, M.
Sharir, J. Snoeyink, and B. Speckmann. Efficient
algorithms for maximum regression depth. In Proc.

15th ACM Sympos. Comput. Geom., pages 31–40,
1999.

[29] S. Langerman and W. Steiger. Computing a maximal
depth point in the plane. Japan Conf. Discrete Com-

put. Geom., 2000.
[30] S. Langerman and W. Steiger. The complexity for

hyperplane depth in the plane. In Proc. 11th ACM-

SIAM Sympos. Discrete Algorithms, pages 54–59, 2000.
Discrete Comput. Geom., to appear.

[31] S. Langerman and W. Steiger. Optimization in ar-
rangements. In Proc. 20th Sympos. Theoret. Aspects

Comput. Sci., Lect. Notes in Comput. Sci., vol. 2607,
Springer-Verlag, pages 50–61, 2003.

[32] J. Matoušek. Computing the center of planar point
sets. In Computational Geometry: Papers from the

DIMACS Special Year (J. E. Goodman, R. Pollack,
and W. Steiger, eds.), AMS, Providence, pages 221–
230, 1991.

[33] J. Matoušek. Linear optimization queries. J. Algo-

rithms, 14:432–448, 1993. Also with O. Schwarzkopf in
Proc. 8th ACM Sympos. Comput. Geom., pages 16–25,
1992.

[34] J. Matoušek. On geometric optimization with few
violated constraints. Discrete Comput. Geom., 14:365–
384, 1995.

[35] N. Megiddo. Applying parallel computation algorithms

in the design of serial algorithms. J. ACM, 30:852–865,
1983.

[36] N. Megiddo. Linear programming in linear time when
the dimension is fixed. J. ACM, 31:114–127, 1984.

[37] K. Miller, S. Ramaswami, P. Rousseeuw, D. Souvaine,
T. Sellares, I. Streinu and A. Struyf. Efficient compu-
tation of location depth contours by methods of compu-
tational geometry. Statistics and Computing, 13:153–
162, 2003. Preliminary version in Proc. 11th ACM-

SIAM Sympos. Discrete Algorithms, pages 153–162,
2001.

[38] N. Naor and M. Sharir. Computing a point in the
center of a point set in three dimensions. In Proc. 2nd

Canad. Conf. Comput. Geom., pages 10–13, 1990.
[39] C. H. Norton, S. A. Plotkin and E. Tardos. Using sep-

aration algorithms in fixed dimension. J. Algorithms,
13:79–98, 1992.

[40] E. A. Ramos. Linear programming queries revisited.
In Proc. 16th ACM Sympos. Comput. Geom., pages
176–181, 2000.

[41] P. J. Rousseeuw and I. Ruts. Constructing the bivari-
ate Tukey median. Statistica Sinica, 8:827–839, 1998.

[42] I. Ruts and P. J. Rousseeuw. Computing depth
contours of bivariate point clouds. Computational

Statistics and Data Analysis, 23:153–168, 1996.
[43] R. Seidel. Small-dimensional linear programming and

convex hulls made easy. Discrete Comput. Geom.,
6:423–434, 1991.

[44] M. Sharir and E. Welzl. A combinatorial bound for
linear programming and related problems. In Proc. 9th

Sympos. Theoret. Aspects Comput. Sci., Lect. Notes in
Comput. Sci., vol. 577, Springer-Verlag, pages 569–579,
1992.

[45] C. G. Small. A survey on multidimensional medians.
Internat. Statist. Rev., 58:263–277, 1990.

[46] G. Toth. Point sets with many k-sets. Discrete

Comput. Geom., 26:187–194, 2001.
[47] J. Tukey. Mathematics and the picturing of data. In

Proc. Int. Congress of Mathematicians, pages 2:523–
531, 1975.

