
Semi-Online Maintenance of Geometric Optima and Measures∗

Timothy M. Chan†

January 27, 2003

Abstract

We give the first nontrivial worst-case results for dynamic versions of various basic geometric

optimization and measure problems under the semi-online model, where during the insertion

of an object we are told when the object is to be deleted. Problems that we can solve with

sublinear update time include the Hausdorff distance of two point sets, discrete 1-center, largest

empty circle, convex hull volume in three dimensions, volume of the union of axis-parallel cubes,

and minimum enclosing rectangle. The decision versions of the Hausdorff distance and discrete

1-center problems can be solved fully dynamically. Some applications are mentioned.

Key words. computational geometry, dynamic data structures

AMS subject classifications. 68U05, 68Q25, 68P05

Abbreviated title. Maintenance of Geometric Optima and Measures

1 Introduction

Problems in computational geometry that admit simple and efficient static solutions can often be

significantly harder to solve in the dynamic setting, when data are inserted and deleted and answers

have to be updated quickly. For example, the width of a planar n-point set is an easy-to-state

quantity and can be computed by a “textbook” O(n logn) algorithm, but a data structure that can

maintain the width under arbitrary point updates in a manner faster than recomputing from scratch

had eluded researchers for years and was found only recently [8]. In this paper, we look at more

standard geometric optimization and measure problems and study their worst-case complexities in

the dynamic setting, and try to gain a better understanding into generally what types of problems

admit nontrivial dynamization results.

The importance of dynamic computational geometry was realized long ago [10], and while there

have been many fundamental results in the area, our current knowledge is still limited. Dynamic

data structures for all kinds of problems reducible to range searching [1], including linear/convex

programming, are known. A class of decomposable query problems [5] has been recognized as easy,

for which simple general tricks are known. A useful technique has been devised to deal with problems

of the form, “which pair of objects minimizes a function?” [14] Yet, simple non-convex minimization

∗A preliminary version of this paper appeared in Proceedings of the 13th ACM-SIAM Symposium on Discrete

Algorithms, 2002. This work was supported in part by an NSERC Research Grant.
†School of Computer Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada (tmchan@uwaterloo.ca).

1

Semi-Online Update Time

Hausdorff distance (2-d) Õ(n5/6) (Corollary 3.2)

Discrete 1-center (2-d) Õ(n5/6) (Corollary 3.2)

Largest empty circle Õ(n7/8) (Corollary 5.2)

Volume of 3-d convex hull Õ(n7/8) (Corollary 5.3)

Volume of union of unit cubes Õ(n1/2) (Theorem 6.1)

Minimum-perimeter/area rectangle Õ(n1/2) / Õ(n5/6) (Corollary 7.2/7.3)

Fully Dynamic Update Time (amortized)

Hausdorff distance decision (2-d) Õ(n1/2) (Corollary 4.2)

Discrete 1-center decision (2-d) Õ(n1/2) (Corollary 4.2)

Largest discrete empty circle Õ(1) (Corollary 4.4)

Table 1: Summary of results.

problems, like the width or smallest enclosing rectangle, or max-min problems, like the Hausdorff

distance (see next page), defy solutions by all these methodologies.

Over a decade ago, Dobkin and Suri [11] introduced the semi-online model as a restricted form of

dynamic computation. The model assumes that when an object is inserted, we are given the time at

which the object is to be deleted. The model simultaneously generalizes the incremental case (when

there are no deletions) and the off-line case (when the entire insertion/deletion sequence is known

in advance). Considering the apparent difficulty in obtaining worst-case results under the original

fully dynamic model, such a restriction is generally a reasonable starting point for research; it lets us

obtain semi-dynamic algorithms that are provably efficient and still practically relevant. We adopt

the semi-online model in this paper and initiate the study of problems of a broader scope and higher

complexity than those originally considered by Dobkin and Suri themselves (as we now know, most of

the problems they considered can be solved fully dynamically by the techniques mentioned, notably

Eppstein’s work [14]).

Table 1 gives a list of problems familiar to computational geometers and the results obtained in

this paper. Background to many of the problems can be found in texts such as [27]. Statically, each

problem can be solved in O(n logn) time, by construction of a planar convex hull, 3-dimensional

convex hull (in particular, planar Voronoi diagram), or 3-dimensional union of cubes. Dynamically,

however, one can see plenty of challenges—we are unaware of nontrivial worst-case results for any of

these problems, even in the incremental case!

Specifically, the first problem is to determine the Hausdorff distance maxq∈Q minp∈P d(p, q) for

two given sets P and Q of n points in the plane, subject to semi-online updates to both P and

Q, where d(·, ·) is the Euclidean metric; the Hausdorff distance is commonly used as a measure of

resemblance between two images. Given planar point set P , the discrete 1-center problem asks for

the smallest circle, centered at a point of P , that encloses P ; this is a popular variant of the standard

1-center problem that cannot be solved by convex programming (in fact, Dobkin and Suri [11] raised

this as an open question for semi-online algorithms). In contrast, the largest empty circle problem,

another example in facility location, seeks the largest circle whose interior avoids P , with center

inside a given region, say, a triangle ∆ (note that there are different versions of the center constraint

in the literature). The next two are measure problems in three dimensions and ask for the volume

2

of the convex hull of n points and of the union of a set of n congruent axis-parallel cubes. The last

(related to the width problem) is to find the smallest rectangle, in terms of perimeter or area, that

encloses a planar point set; this “bounding box” is allowed to have arbitrary orientation. All these

problems have practical applications. We obtain a sublinear semi-online algorithm for each, using

Õ(n) space. (Throughout the paper, the Õ notation hides factors that are o(nε) for any fixed ε > 0.)

Along the way, we notice a few easier variants that admit sublinear fully dynamic algorithms.

These variants include the decision versions of the Hausdorff distance and discrete 1-center problems

(decide whether the Hausdorff distance is less than a given value r, and decide whether there exists

a circle of radius r, centered at a point of P , that encloses P), as well as the discrete version of the

largest empty circle problem (find the largest circle, centered at a point of P , whose interior avoids

P except the center).

Our semi-online algorithms all begin with a very simple strategy that was used recently by the

author to tackle the width problem [8] and is outlined in the next section (Lemma 2.1). As one might

guess, data structures for range searching [1] are exploited to obtain the sublinear time bounds, but

in nontrivial (and at times, creative) ways. Most of our results are therefore theoretical. It is assumed

that the input is in general position, without loss of generality, by known perturbation schemes.

We mention some “applications” in Section 8, including improved time bounds for Klee’s measure

problem [26] in the case of 4-dimensional unit hypercubes, and for the minimum-diameter spanning

tree problem, which are of independent interest.

2 The strategy for semi-online dynamization

The most common dynamization strategy [5, 24, 25] is based on decomposing a set of objects into

subsets, solving the problem on each subset, and combining the answers. An update affects only a

small number of subsets and thus can be efficiently handled. Unfortunately, this simple approach

is not viable for any of our problems, because they are not directly “decomposable”—there is no

effective way to combine the answers when the set is arbitrarily decomposed into a large number of

subsets.

Fortunately, another very simple (but lesser known) approach works for us, using a weaker form

of decomposability based on dividing the given set into two subsets, one of which is kept small, as

explained in the lemma below. The strategy was most recently used by the author [8] (building on a

previous work by Eppstein [16]) to obtain a fully dynamic algorithm for planar width with Õ(n1/2)

amortized time, by a variant of the lemma that handles arbitrary deletions (with α = β = 1). A

similar idea was also used in one example from Dobkin and Suri’s paper [11].

Lemma 2.1 Consider a problem Π with the following property, where α ≥ 1 and 0 < β ≤ 1 are con-

stants: we can preprocess a set S of n objects into a data structure in Õ(n) time and space, such that

given any additional set S ′ of b objects, we can solve Π on the set S ∪S ′ (block query) in Õ(bαn1−β)

time. Then we can solve Π on a set of n objects under semi-online updates in Õ(n1−β/(1+α)) time

per update, using Õ(n) space.

Proof: We store most of the objects in a static set S, preprocessed in the given data structure, and

put the rest in an auxiliary list S ′. Insertions and deletions are done directly to S ′, but after every

b updates, we reset S ′ to hold the objects with the b smallest deletion times and S to hold all other

3

objects (this ensures that any object to be deleted in the next round of b updates is indeed in S ′,

not S). The data structure for S has to be rebuilt, in Õ(n) time, for every b updates. At any time,

S′ has O(b) size, so the solution can be computed by a block query in Õ(bαn1−β) time. The total

time for n updates is therefore

Õ((n/b) · n + n · (bαn1−β)) = Õ(n2−β/(1+α)), (1)

if we set the parameter b ≈ nβ/(1+α). This proves an amortized time bound of Õ(n1−β/(1+α)).

If the application insists on a worst-case time bound, a well-known modification (e.g., see [24, 25])

is required: spread the work of rebuilding the data structure for S evenly over the next b/2 updates.

The data structure for S is available for the j-th update whenever j mod b ≥ b/2. A similar “shifted”

version of S and S ′ can deal with the other case j mod b < b/2. 2

All our efforts are now directed to demonstrating that our problems obey the requirement of the

lemma. This task isn’t necessarily straightforward, as we will see when we examine each problem in

detail.

On one occasion (in a higher-dimensional application), we find the following modification of the

lemma useful:

Lemma 2.2 Lemma 2.1 still holds if we are unable to preprocess S from scratch in Õ(n) time but

can create a copy of the data structure for S ∪ S ′ (block insertion), given the data structure for S,

within Õ(n+ bαn1−β) time.

Proof: This is similar to the previous proof, except that we will use multiple levels of decomposition

(increasing space by a logarithmic factor). Specifically, let ` = dlog2(n/b)e. For each i = 1, . . . , `, we

maintain a partition of the objects into a set Si, stored in a data structure, and an auxiliary list S ′
i:

insertions and deletions are done directly to S ′
i, but after every n/2i+1 updates, we reset S ′

i to hold

all objects with the n/2i smallest deletion times and Si to the complement of S ′
i. The size of S ′

i is

always O(n/2i).

After every n/2i+1 updates, we need to rebuild the data structure for Si. We know that Si−1 ⊆ Si

(because at any time, S ′
i−1 must contain all objects with the n/2i smallest deletion times). Thus, a

data structure for Si can be created by copying the structure for Si−1 and inserting S ′
i−1\S′

i in O(n
2ib

)

blocks. The total number of block insertions over n updates is therefore O(
∑`

i=1 2
i+1 · n

2ib
) = Õ(n/b).

At any time, the solution can be computed by a block query to the data structure for S`, so we again

arrive at the same expression (1).

If the application insists on a worst-case time bound, we can again spread the construction of the

data structures over time, and for each i, maintain two shifted versions of Si and S′
i to ensure that

one of them is available at any given time. We omit the standard details. 2

3 Optimizing over discrete points on a polytope

We consider first the problem of maintaining the Hausdorff distance maxq∈Q minp∈P d(p, q) dynami-

cally. The difficulty here is the apparent necessity to know the nearest neighbor of each point q ∈ Q

to the point set P (unlike in the bichromatic closest pair problem studied by Eppstein [14], of the

min-min type). As points are inserted to P , a large number of these nearest neighbors could change.

4

The idea is that with Lemma 2.1 (and Lemma 2.2), we do not need to maintain the newest version

of these nearest neighbors after every single update, but only after a block of updates.

The method involves multi-level range searching tools. Although the description assumes fami-

larity with these tools, it is conceptually not complicated.

The method is quite general: we can combine the nearest neighbor distances by operators other

than the maximum, and we can solve the problem in any fixed dimension. For this reason, we state

a more general problem. Let d be a constant. Given a set H of hyperplanes in IRd, define a mapping

λH : IRd−1 → IRd as follows: λH(q) is the point obtained by lifting q vertically onto the lower envelope

of H (in other words, the lowest intersection of H with the vertical line at q). Given a set of points

Q ⊂ IRd−1, we wish to maintain implicitly the set of points λH(Q) = {λH(q) | q ∈ Q} (all lying

on a polytope’s boundary, as the title of this section suggests); actually, we want the output to be

2λH(Q) for some decomposable operator 2, satisfying the requirement that for any disjoint pair of

sets S1 and S2, 2S1 and 2S2 can be combined to form 2(S1 ∪ S2) in constant time.

Theorem 3.1 Suppose that we can preprocess an n-point set Q ⊂ IRd−1 in Õ(n) time so that 2λh(Q)

for any hyperplane h in IRd can be computed in Õ(n1−γ) time, with γ ≥ 1/d. Then we can maintain

2λH(Q) for a set Q of at most n points in IRd−1 and a set H of at most n hyperplanes in IRd in

Õ(n
1− 1

d(bd/2c+1)) time per semi-online update to Q and H.

Proof: We show how to store Q and H so that 2λH∪H′(Q ∪Q′) can be computed efficiently given

small additional blocks Q′ and H ′.

Preprocess the hyperplanes H in Õ(n) time to support vertical ray shooting queries in

Õ(n1−1/bd/2c) time [1]. For each q ∈ Q, compute λH(q); for d ≤ 3, this step takes O(n logn)

time. In Õ(n) time, preprocess λH(Q) for simplex range searching [1, 23] to form canonical subsets

{Qi}i of total size Õ(n), such that given any query simplex ∆ ⊂ IRd, we can retrieve all points

q ∈ Q with λH(q) ∈ ∆ as a union of disjoint canonical subsets {Qi}i∈I in Õ(n1−1/d) time, with∑
i∈I |Qi|1−1/d = Õ(n1−1/d). Precompute 2λH(Qi) for every canonical subset Qi. In addition, pre-

process each Qi as specified so that given any hyperplane h, 2λh(Qi) can be found in Õ(n1−γ) time;

the total preprocessing time is Õ(n).

Given query sets Q′ and H ′ of size b, construct the lower envelope of H ′ in Õ(bbd/2c) time and

triangulate it into Õ(bbd/2c) (d − 1)-simplices. Take each such simplex ∆, defined by hyperplane

h′ ∈ H ′, say.

• Consider the points q ∈ Q such that λH(q) lies directly below ∆. By simplex range searching,

these points can be partitioned into canonical subsets {Qi}i∈I . Take each Qi. All points q ∈ Qi

have λH∪H′(q) = λH(q); so combine the current answer with 2λH(Qi). The time required is

Õ(n1−1/d).

• Consider the points q ∈ Q such that λH(q) lies directly above ∆. Again these points can

be partitioned into canonical subsets {Qi}i∈I . Take each such Qi. All points q ∈ Qi have

λH∪H′(q) = λh′(q); so combine the current answer with 2λh′(Qi). The time required is

Õ(
∑

i∈I |Qi|1−γ) = Õ(n1−1/d).

Applying this process to all simplices requires Õ(bbd/2cn1−1/d) time overall. The current answer is

2λH∪H′(Q). To get 2λH∪H′(Q ∪ Q′), compute λH∪H′(q′) for each q′ ∈ Q′ by vertical ray shooting

on H and on H ′, in Õ(bn1−1/bd/2c) total time, and combine the current answer with 2λH∪H′(Q′).

5

For d ≤ 3, the preprocessing time is Õ(n), so Lemma 2.1 is applicable, with α = bd/2c and

β = 1/d. For d ≥ 4, we cannot afford to recompute λH(Q) from scratch, so Lemma 2.2 is required:

to build a new data structure for Q∪Q′ and H ∪H ′, compute λH∪H′(q) from λH(q) for every q ∈ Q,

by vertical ray shooting on H ′, in total time Õ(bbd/2c +n); in addition, compute λH∪H′(q′) for every

q′ ∈ Q′ in total time Õ(bn1−1/bd/2c); now, the rest of the new data structure can be built from

scratch, in Õ(n) time. 2

Note that we have used simplex range searching only for point sets in convex position. If it is

possible to improve the range searching results under this special case (for example, it is not difficult

in 2-d), the bound in the theorem would be improved as well.

The Hausdorff distance is just a special case of the above problem in one dimension higher by a

standard transformation. The discrete 1-center problem can similarly be solved, as it asks for a similar

quantity minq∈P maxp∈P d(p, q). In a forthcoming application, we encounter an additively-weighted

variant that seeks maxq∈Q minp∈P [d(p, q) + wq] or minq∈P maxp∈P [d(p, q) + wq], given weights wq;

this variant can be solved similarly as well.

Corollary 3.2 In IRd, we can maintain the Hausdorff distance of two sets of at most n points and

the discrete 1-center of a set of n points (possibly with additive weights) in Õ(n
1− 1

(d+1)(dd/2e+1)) time

per semi-online update.

Proof: For the unweighted Hausdorff distance problem, transform each point p = (a1, . . . , ad) in P

to a (d + 1)-dimensional hyperplane h in H with equation {(x1, . . . , xd+1) | xd+1 = a21 + · · · + a2d −
2a1x1 − · · · − 2adxd}. The points in λH(Q) correspond to the nearest neighbors of the points in Q

to set P . The operator 2 takes the maximum of xd+1 + x21 + · · · + x2d (the actual nearest neighbor

distance squared) over the points. The requirement in the theorem (finding 2λh(Q) for a given

hyperplane h) translates to finding the largest distance of Q to a given point p, which can be done

by farthest neighbor queries with γ = 1/dd/2e [1].
In the weighted case, the operator 2 should instead return the maximum of√

xd+1 + x21 + · · ·+ x2d + w, where w is the weight of the point q = (x1, . . . , xd). The re-

quirement translates to finding weighted farthest neighbors: more precisely, given query point

(a1, . . . , ad), find the maximum of
√
a21 + · · ·+ a2d − 2a1x1 − · · · − 2adxd + x21 + · · ·+ x2d + w over

a set of O(n) tuples (x1, . . . , xd, w). We can compare this maximum with any value b by half-

space range search in d + 2 dimensions: given (a1, . . . , ad, b), find a tuple that satisfies w ≥ b or

[a21+ · · ·+ a2d− b2]− 2a1x1− · · ·− 2adxd+2bw+ [x21+ · · ·+x2d−w2] ≥ 0. This gives a data structure

with γ = 1/(bd/2c+1) for the decision query problem, and by parametric or randomized search, for

the maximization query problem as well [1]. 2

By linearization or the use of lower envelopes of surfaces and semi-algebraic range searching [1],

sublinear results can also be obtained for other metric d(·, ·) with constant description complexity.

For Hausdorff distances under the L∞ metric, much simplification is possible, since orthogonal range

searching [1, 27] replaces simplex/halfspace range searching, and an L∞-Voronoi diagram [6] replaces

the lower envelope; the time bound reduces to O(n
1− 1

dd/2e+1 polylogn).

6

4 Some easier variants

Next, we give faster algorithms for the decision versions of the Hausdorff distance and discrete 1-

center problem. The algorithms are in fact fully dynamic and are obtained by directly modifying

known range searching structures (more specifically, by augmenting a standard partition tree to store

two extra numbers at each node). The idea is actually to generalize the problem of testing whether

each point is above the lower envelope, to counting the number of hyperplanes below each point.

To state the generalized problem, define the mapping cH : IRd → IN, where cH(q) is the number

of hyperplanes of H that lie below q. Implicitly, we wish to maintain the multiset of numbers

cH(Q) = {cH(q) | q ∈ Q} for a given set of points Q ⊂ IRd; more precisely, we want to output

2cH(Q), where the operator 2 is assumed to be decomposable and furthermore satisfy the property

that for any set S of numbers and a number j, 2(S+ j) can be computed from 2S in constant time

(where S + j = {i+ j | i ∈ S}).

Theorem 4.1 We can maintain 2cH(Q) for a set Q of at most n points and a set H of at most

n hyperplanes in IRd in Õ(n1−1/d) amortized time per update to Q and H fully dynamically, using

O(n) space.

Proof: Assume that the size of H is m instead. Store the dual points of H in a dynamic data

structure to support simplex range counting queries in Õ(m1−1/d) time and updates in Õ(1) amortized

time [1]. The notation H∆ denotes the subset of all hyperplanes of H crossing a given simplex ∆.

Matoušek’s partition theorem [1, 21] asserts that any set Q of n points can be partitioned into

O(r) subsets {Qi}i, each of size at most n/r and enclosed in a simplex ∆i, with the property that

every hyperplane crosses O(r1−1/d) of these simplices. We choose r to be a constant here; the

construction time is then linear. Assuming that Q itself is enclosed in a simplex ∆, we can ensure

that the ∆i’s are all inside ∆ (by intersecting with ∆ and retriangulating).

Let c∆i be the number of hyperplanes in H∆ that lie completely below ∆i. Note that the duals

of all hyperplanes intersecting ∆ and below ∆i form cells in a hyperplane arrangement of constant

size. Therefore, we can compute c∆i by a constant number of simplex range counting queries in

Õ(m1−1/d) time.

Our data structure for (Q,∆) consists of recursively constructed structures for {(Qi,∆i)}i, to-
gether with the numbers {c∆i}i and the answer 2cH∆(Q).

Knowing the subanswers 2cH∆i
(Qi), we can compute the answer 2cH∆(Q) as follows. Take

each Qi. All points q ∈ Qi have cH∆(q) = cH∆i
(q) + c∆i ; so combine the current answer with

2(cH∆i
(Qi) + c∆i). Repeating for all Qi’s yields the desired answer in constant (O(r)) time. By

evaluating answers bottom-up, we can thus preprocess our data structure in time Õ(nm1−1/d).

To insert a hyperplane h to H∆, we can first increment the count c∆i for each simplex ∆i

completely above h, then recursively insert h to H∆i for each simplex ∆i crossed by h, and finally

recompute the answer 2cH∆(Q) from the subanswers 2cH∆i
(Qi) in the manner described above. To

delete h from H∆, we proceed similarly, decrementing the counts c∆i instead. The recurrence for the

insertion/deletion time is t(n) = O(r1−1/d)t(n/r) +O(r), which solves to t(n) = O(n1−1/d+ε) for an

arbitrarily small ε > 0, if r is made arbitrarily large.

To delete a point q from Q, we recursively delete q from the subset Qi that contains it, and then

recompute the answer 2cH∆(Q) from the subanswers as above. The required time is only O(logn).

7

Initially ∆ can be set to IRd. We have thus obtained a data structure that maintains the value

2cH(Q), supports updates to H in Õ(n1−1/d) time, can be preprocessed for any given Q in T (n) =

Õ(nm1−1/d) time, and supports deletions from Q in D(n) = O(logn) time.

It remains to handle insertions to Q. For this, we apply a well-known general technique of Bentley

and Saxe [5, 24, 25], which decomposes Q into logarithmically many deletion-only subsets (recall that

the operator 2 is decomposable) and transforms any data structure with preprocessing time T (n)

and deletion time D(n) into a data structure that handles arbitrary updates to Q in amortized time

O((T (n)/n) log n+D(n)) = Õ(m1−1/d). As can be verified, this transformation preserves our ability

to perform insertions and deletions to H, with the update time for H increased by a logarithmic

factor, which is still Õ(n1−1/d). 2

Corollary 4.2 Given at most n points and at most n balls in IRd, we can determine the ball that

contains the least/most points in Õ(n1−
1

d+1) amortized time fully dynamically. In IRd, we can compare

the Hausdorff distance of two sets of at most n points or the discrete 1-center radius of a set of n

points with a fixed value r in Õ(n1−1/d) amortized time fully dynamically.

Proof: Transform each point to a (d + 1)-dimensional hyperplane as in the proof of Corol-

lary 3.2, transform each ball with center (x1, . . . , xd) and radius r to a (d + 1)-dimensional point

(x1, . . . , xd, r
2 − x21 − · · · − x2d), and take 2 to mean maximum/minimum. The second statement

follows from the first: the slight improvement in the time bound is due to the fact that the balls

have equal radius; here, the lifted points in Q lie on a common d-dimensional surface in IRd+1, and

the duals of the hyperplanes in H also lie on a common d-dimensional surface, so Agarwal and

Matoušek’s improved partition theorem [2] is applicable. 2

Returning to the exact Hausdorff distance problem, we quickly mention a straightforward but

fast algorithm for the special case when we expect only a small number of nearest neighbors to

change in an update. This result is not surprising, but it makes us appreciate our earlier worst-

case algorithms better. Still, the special-case algorithm would be interesting in applications where

the update sequence is “random” (e.g., see [15]). The subsequent corollary mentions one particular

consequence involving the all-nearest-neighbors graph, which connects each point p ∈ P to its nearest

neighbor in P \ p.

Theorem 4.3 We can maintain λH(Q) for a set Q of at most n points in IRd−1 and a set H of at

most n hyperplanes in IRd in Õ(kn
1− 2

bd/2c+1) amortized time fully dynamically, with Õ(n
2− 2

bd/2c+1)

space, where k is the number of changes to λH(Q).

Proof: Store H in a dynamic data structure for vertical ray shooting with Õ(n
1− 2

bd/2c+1) query and

amortized update time [1]. Store λH(Q) in a dynamic data structure for halfspace range reporting

with Õ(n
1− 2

bd/2c+1+A) query time (A is the answer size) and Õ(n
1− 2

bd/2c+1) amortized update time [1,

3]. The point set λH(Q) itself can be maintained as follows: when a point q is inserted/deleted, simply

insert/delete λH(q), computable by vertical ray shooting; when a hyperplane h is inserted to H, find

all k points q with λH(q) above h by a halfspace range reporting query and reset each such λH(q)

to λh(q); when h is deleted, retrieve all k points q with λH(q) set to λh(q) and recompute each such

λH(q) by vertical ray shooting. 2

8

Corollary 4.4 In IRd, we can maintain the nearest neighbor of each point in one set of at most n

points to another set of at most n points in Õ(kn
1− 2

dd/2e+1) amortized time fully dynamically, where k

is the number of changes to the nearest neighbors. We can maintain the all-nearest-neighbors graph

of an n-point set in Õ(n
1− 2

dd/2e+1) amortized time. We can maintain the largest discrete empty ball

in the same time.

Proof: The first statement is immediate by the standard transformation. The second statement can

be obtained by a monochromatic variant of the algorithm, with the following well-known observa-

tion [28]: the degree of the all-nearest-neighbors graph is bounded by a constant, thus the number of

changes to the graph is k = O(1) for every update. The largest distance in this graph is the radius

of the largest discrete empty ball. 2

The maintenance of the all-nearest-neighbors graph was raised by several researchers in connection

with dynamic closest pairs [28], but considering that a dynamic all-nearest-neighbors algorithm can

indirectly be used to answer nearest neighbor queries (by repeatedly inserting and then deleting the

query point), the above bound is probably close to optimal.

The usual tricks could perhaps make the amortized bounds worst-case.

5 Optimizing over vertices of a 3-polytope

To solve problems like the largest empty circle (the original continuous version), we need to optimize

a function over all points on a lower envelope rather than just a discrete set of points. Dynamization

appears even harder. We may infer from the application that the optimum must be located at

a vertex of the polytope (since we are actually maximizing a convex function), but the polytope,

and thus its set of vertices, can change drastically in the worst case as hyperplanes are inserted

and deleted. (Minimizing a convex function over a polytope is of course convex programming, but

maximizing a convex function seems to require examining every vertex.)

We cannot afford to maintain the polytope explicitly after every update, so the idea is again to

invoke Lemma 2.1 and use only a static structure, periodically rebuilt after a block of updates. The

structure this time is more involved, as it needs to support queries on not just a set of points, but a

set of facial features (such as line segments) that come from the polytope.

This approach of implicitly maintaining a polytope again works in any fixed dimension in theory,

but we will focus on problems involving 3-d polytopes that have efficient static solutions. (When the

dimension exceeds 3, the number of vertices may be Ω(n2) or bigger.)

The setup is as before and assumes a decomposable operator 2. Given a set H of planes in IR3,

let VH denote the set of vertices of the lower envelope of H. The objective is to maintain 2VH .

Theorem 5.1 Suppose that we can preprocess a set E of n pairs of planes in IR3 in Õ(n) time so

that 2{h1 ∩ h2 ∩ h | (h1, h2) ∈ E} for any plane h can be computed in Õ(n1−γ) time, with γ ≥ 1/4.

Then we can maintain 2VH for a set H of n planes in IR3 in Õ(n7/8) time per semi-online update.

Proof: We show how to store a static set H so that 2VH∪H′ can be computed quickly given a block

H ′ of b planes.

First construct the 3-d lower envelope of H in O(n logn) time [27] and preprocess it to support

membership and ray shooting queries in O(logn) time [1]. In Õ(n) time, preprocess its O(n) vertices

9

VH for 3-d simplex range searching [1] so that given any tetrahedron ∆, we can compute 2(VH ∩∆)

in Õ(n2/3) time. Next, in Õ(n) time, preprocess the O(n) edges EH of the lower envelope for

triangle-intersection queries, so as to form canonical subsets {Ei}i of total size Õ(n), such that

given any triangle ∆, we can retrieve all edges (line segments) intersecting ∆ as a union of disjoint

canonical subsets {Ei}i∈I in Õ(n3/4) time, with
∑

i∈I |Ei|3/4 = Õ(n3/4)—this involves multi-level

range/intersection searching tools [1] (specifically, semi-algebraic range searching [2] in Plücker space;

e.g., see [17, proof of Theorem 3.1], which examined a similar subproblem of quadilaterial-intersection

queries for rays). For yet another level, preprocess each canonical subset Ei as specified so that given

any plane h intersecting every edge of Ei, 2{e ∩ h | e ∈ Ei} can be computed in Õ(n1−γ) time.

Given query set H ′, construct the lower envelope of H ′ (with vertex set VH′ and edge set EH′)

and triangulate it into O(b) triangles. Take each triangle ∆ defined by plane h′ ∈ H ′, say.

• Vertices of VH that lie directly below ∆ are also vertices of VH∪H′ , so combine the current

answer with 2{v ∈ VH | v directly below ∆} by simplex range searching in Õ(n2/3) time.

• Consider the edges of EH that intersect ∆. These edges can be partitioned into canonical

subsets {Ei}i∈I . Take each such Ei. The intersection of the edges of Ei with h′ are all vertices

of VH∪H′ , so combine the current answer with 2{e ∩ h′ | e ∈ Ei}. The time required is

Õ(
∑

i∈I |Ei|1−γ) = Õ(n3/4).

Applying this process to all triangles requires Õ(bn3/4) time overall. So far, all vertices of VH∪H′ that

are either vertices of VH or intersections of edges of EH with planes of H ′ have been accounted for.

We can also take each edge e′ ∈ EH′ , determine the at most two vertices of the intersection with the

lower envelope of H, by ray shooting, and combine the answer with these vertices. We can further

take each vertex of VH′ that lies below the lower envelope of H, and combine the answer with such

vertices. The additional time is O(b logn), and the end result is 2VH∪H′ .

The conclusion now follows from Lemma 2.1 with α = 1 and β = 1/4. 2

Corollary 5.2 We can maintain the largest empty circle of an n-point set in IR2, with center re-

stricted inside any given triangle ∆, in Õ(n7/8) time per semi-online update.

Proof: Apply the same transformation as in the proof of Corollary 3.2 to obtain n planes in IR3.

Add three nearly vertical planes along the edges of ∆ (to ensure that the n planes cannot be seen

from below when outside ∆). The largest empty circle must be centered at a vertex of the lower

envelope of these n+3 planes H (usually a Voronoi vertex, except in boundary cases). The optimal

radius is then 2VH , with the same operator 2 to maximize x3 + x21 + x22. The requirement in the

theorem (finding 2{h1∩h2∩h | (h1, h2) ∈ E}) seeks, for a given query plane h, the maximum of O(n)

functions in terms of h, parametrizable in 2 variables (since our planes are defined as liftings of points

in IR2). These nasty-looking bivariate functions nonetheless have constant description complexity,

and by known semi-algebraic range searching and vertical ray shooting techniques in 3-d [1, 2], we

can achieve γ = 1/3. 2

Corollary 5.3 We can maintain the volume of the convex hull of an n-point set in IR3 in Õ(n7/8)

time per semi-online update.

Proof: Apply duality to transform each given point p to a plane p∗ so that facets of the upper hull

of the points corresponds to vertices of the lower envelope of the planes. For a vertex v defined by

10

planes p∗1, p
∗
2, and p∗3, we associate with it the volume of the tetrahedron op1p2p3 for some fixed

point o sufficiently far below the convex hull. The operator 2 just sums the volumes associated with

the vertices of the given set. Applying a similar process to the lower hull and taking the difference

yields the volume of the convex hull.

The theorem requires the sum of the volumes of op1p2p over n given pairs (p1, p2) and a query

point p. By inspecting the proof of the theorem, we can ensure that the generated pairs (p1, p2)

are consistently oriented with respect to the query point p. The volume of op1p2p is then a linear

function in p (defined by a standard determinant), so the sum is also a linear function in p. By

precomputing the coefficients in linear time, we can answer the volume-sum query in constant time

for any given p, so γ = 1. 2

One can imagine more applications of Theorem 5.1: for example, counting the number of vertices

of a convex hull in IR3, determining the smallest/largest-area Delaunay triangle in IR2, etc. (The

surface area of the convex hull though behaves differently, as we have to sum square roots.)

6 Measuring a union of unit cubes

We can apply the same approach to implicitly maintain structures other than a 3-polytope. To

illustrate the idea on a simple example, we now explore the union of n unit axis-parallel cubes in three

dimensions, a structure also known to have linear complexity [6]. O(
√
n logn) dynamic algorithms

for measuring the union of squares (in fact, arbitrary axis-parallel rectangles) were previously known

by simple variants of the k-d tree (see [26]).

Theorem 6.1 We can maintain the volume of the union of a collection C of n unit axis-parallel

cubes in IR3 in Õ(
√
n) time per semi-online update.

Proof: We show how to store C so that the volume of
⋃
(C ∪C ′) can be computed quickly given an

additional set C ′ of b unit cubes.

First compute
⋃
C and decompose this 3-d region into a collection S of O(n) disjoint boxes (boxes

here are axis-parallel); this computation can be done in O(n logn) time, as shown in [9]. Preprocess

S in Õ(n) time so that given any query box q ⊂ IR3, we can determine the sum of the volumes of

σ ∩ q over all σ ∈ S in Õ(1) time; in a moment, we will see exactly how this can be accomplished by

orthogonal range searching.

Given query set C ′, compute
⋃
C ′ and decompose the complement of the region into a collection

S′ of O(b) disjoint boxes. Take each box σ′ ∈ S′. Perform the above query to find the total volume

of σ∩σ′ over all σ ∈ S in Õ(1) time. Summing over all σ′ ∈ S′ yields the total volume of
⋃
C outside⋃

C ′. Adding the volume of
⋃
C ′ itself yields the final answer. The overall time is Õ(b), so we can

apply Lemma 2.1 with α = β = 1.

It remains to describe how to sum volumes of σ ∩ q over all σ ∈ S for a given query box q. Lift

each box σ ∈ IR3 to a point σ∗ ∈ IR6 by taking the six coordinates of the box. By orthogonal range

searching [1, 27], we can retrieve all boxes in S whose liftings lie in one of the 26 quadrants at q∗ as

a union of Õ(1) canonical subsets in Õ(1) time, after Õ(n)-time preprocessing into canonical subsets

of Õ(n) total size. Now, boxes σ inside each such quadrant intersect q (if at all) in a consistent

“pattern” so that the volume of σ ∩ q can be characterized by a polynomial function (degree 3 at

11

most) on the coordinates of q. By precomputing the (constant number of) coefficients of the sum of

these polynomial functions in linear time for each canonical subset, we can therefore compute the

sum of the volume of σ∩q over all σ∗ inside a quadrant at q∗ in Õ(1) time, for any given q. Summing

over all quadrants answers the query. 2

The running time above is actually O(
√
npolylogn). With more effort, we should be able to

maintain the surface area of the union of n unit axis-parallel cubes in IR3, or the area/perimeter of

a union of n homothets of a constant-size convex polygon in IR2 (the latter union also has linear

complexity).

7 Optimizing with multiple convex polygons

We started with optimization problems dealing with the interaction of points and a polytope. We will

close with a more complicated form of optimization, but in the 2-d plane, dealing with interaction

between two or more convex polygons. The planar width problem is perhaps the simplest in this

category and was addressed in a previous paper [8]. Its relative, the minimum enclosing rectangle

problem, is the main subject of this section; unlike in [8], we are not able to obtain a fully dynamic

algorithm because of the added complications.

We first state the abstract problem. Given a set of lines H, let VH be as before (the set of vertices

of the lower envelope), but abusing notation slightly, let λH be instead a mapping from IR2 to IR2:

λH(q) is the point lying on the lower envelope of H and the vertical line at q. Let s be a constant.

Below, 〈λH1 , . . . , λHs〉(Q) denotes the set of tuples of points {〈λH1(q), . . . , λHs(q)〉 | q ∈ Q}. The

objective is to maintain 2〈λH1 , . . . , λHs〉(VH1 ∪ · · · ∪ VHs) for s sets of lines H1, . . . , Hs and some

decomposable operator 2.

Notation: Given a proper subset of indices J ⊂ {1, . . . , s}, the J-selector refers to the following

operator ⊗: 〈p1, . . . , ps〉 ⊗ 〈q1, . . . , qs〉 = 〈r1, . . . , rs〉, where rj = pj if j ∈ J , and rj = qj if j 6∈ J .

There are a constant number (2s − 1) of such selectors.

Theorem 7.1 Suppose that we can preprocess a set S ⊂ (IR2)s of n tuples (each consisting of s

points on a common vertical line) in Õ(n) time so that given any s lines h1, . . . , hs and selector ⊗,
2{〈λh1(p1), . . . , λhs(p1)〉 ⊗ 〈p1, . . . , ps〉 | 〈p1, . . . , ps〉 ∈ P} can be computed in Õ(n1−γ) time. Then

we can maintain 2〈λH1 , . . . , λHs〉(VH1 ∪ · · ·∪VHs) for given sets H1, . . . , Hs of at most n lines in IR2

in Õ(n1−γ/2) time per semi-online update to H1, . . . , Hs.

Proof: We show how to store H1, . . . , Hs so that 2〈λH1∪H′
1
, . . . , λHs∪H′

s
〉(VH1∪H′

1
∪· · ·∪VHs∪H′

s
) can

be computed efficiently given additional blocks H ′
1, . . . , H

′
s of size b.

Compute the lower envelope of each Hj (a convex polygon) in O(n logn) time. For each v ∈
VH1 ∪ · · · ∪ VHs , find λHj (v) by binary search. Using a binary tree construction, we can form

canonical subsets {Vi}i of total size O(n logn), such that for any j, we can retrieve all points v ∈ VHj

inside a vertical slab as a union of O(log n) disjoint canonical subsets. For each canonical subset Vi,

preprocess the tuples {〈λH1(v), . . . , λHs(v)〉 | v ∈ Vi} in the specified data structure.

Given query sets H ′
1, . . . , H

′
s, construct the lower envelope of each H ′

j in O(b log b) time. Draw

vertical lines at the vertices of these s envelopes. In addition, intersect each edge of these envelopes

with each of the lower envelopes of H1, . . . , Hs, by binary search [27], in total O(b log n) time. Draw

12

vertical lines at these intersections. As a result, the plane is divided into O(b) vertical slabs. Take

each vertical open slab σ. Within σ, the lower envelope of Hj ∪H ′
j coincides with either the lower

envelope of Hj or a single line h′j ∈ H ′
j . So, VHj∪H′

j
∩ σ is either VHj ∩ σ or ∅. Assume the former.

Partition the point set VHj ∩ σ into O(logn) canonical subsets. Take each canonical subset Vi.

Now, λHk∪H
′
k
(Vi) is either λHk

(Vi) or λh′
k
(Vi) for each k. Thus, 2〈λH1∪H′

1
, . . . , λHs∪H′

s
〉(Vi) is merely

2{〈λh′1
(v), . . . , λh′s(v)〉⊗ 〈λH1(v), . . . , λHs(v)〉 | v ∈ Vi} for some selector ⊗, and so can be computed

in Õ(n1−γ) time per canonical subset Vi.

We conclude that 2〈λH1∪H′
1
, . . . , λHs∪H′

s
〉((VH1∪H′

1
∪ · · · ∪ VHs∪H′

s
) ∩ σ) can be computed in

Õ(n1−γ) time. Repeating this process over all slabs requires Õ(bn1−γ) time overall. In addition,

each of the O(b) vertical lines drawn may pass through a vertex v0 of VH1∪H′
1
∪ · · · ∪ VHs∪H′

s
.

If so, compute 〈λH1∪H′
1
(v0), . . . , λHs∪H′

s
(v0)〉, by binary searches on the lower envelopes of Hj

and H ′
j , and combine with the answer. The additional time is O(b log n), and the end result is

2〈λH1∪H′
1
, . . . , λHs∪H′

s
〉(VH1∪H′

1
∪ · · · ∪ VHs∪H′

s
).

The conclusion now follows from Lemma 2.1 with α = 1 and β = γ. 2

Corollary 7.2 We can maintain the minimum-perimeter rectangle enclosing an n-point set P ⊂ IR2

in Õ(n1/2) time per semi-online update.

Proof: We represent the rectangle using five parameters ξ, η1, . . . , η4:

{(x, y) | − η1 ≤ ξx+ y ≤ η2, −η3 ≤ x− ξy ≤ η4}.

The perimeter is 2(η1 + · · ·+ η4)/
√
1 + ξ2.

So, transform each point (a, b) ∈ P to the following four lines: {(ξ, η1) | η1 = −ξa − b} in H1,

{(ξ, η2) | η2 = ξa+ b} in H2, {(ξ, η3) | η3 = −a+ ξb} in H3, and {(ξ, η4) | η4 = a− ξb} in H4. Define

the operator 2 to minimize (η1 + · · · + η4)/
√
1 + ξ2 over all tuples 〈(ξ, η1), . . . , (ξ, η4)〉 of the given

set. Our problem is equivalent to determining 2〈λH1 , . . . , λH4〉(IR2). Since one of four sides of the

optimal rectangle must be defined by a convex hull edge of the original points (see the Appendix),

our problem reduces to finding 2〈λH1 , . . . , λH4〉(VH1 ∪ · · · ∪ VH4), so Theorem 7.1 is applicable with

s = 4.

Now, given the selector’s index set J ⊂ {1, . . . , 4}, the theorem requires a data structure to store

a set S of n tuples so that given query lines {(x, y) | y = sjx + tj} (j = 1, . . . , 4), we can find the

tuple 〈(ξ, η1), . . . , (ξ, η4)〉 ∈ S that maximizes

∑
j∈J(sjξ + tj) +

∑
j 6∈J ηj√

1 + ξ2
=

ξ√
1 + ξ2

∑

j∈J

sj +
1√

1 + ξ2

∑

j∈J

tj +

∑
j 6∈J ηj√
1 + ξ2

.

By storing the plane {(X,Y, Z) | Z = ξ√
1+ξ2

X + 1√
1+ξ2

Y +

∑
j 6∈J

ηj√
1+ξ2

} associated with each tuple

for vertical ray shooting in 3-d [1, 27] (by constructing a 3-d convex hull and performing 2-d point

location), we can achieve γ = 1. 2

Corollary 7.3 We can maintain the minimum-area rectangle enclosing an n-point set P ⊂ IR2 in

Õ(n5/6) time per semi-online update.

13

Proof: Proceed as in the previous proof, but with a different objective to minimize (η1 + η2)(η3 +

η4)/(1 + ξ2).

The data structuring requirement is now more complex. Again we want to preprocess n tuples

of the form 〈(ξ, η1), . . . , (ξ, η4)〉. Let {(x, y) | y = sjx + tj} (j = 1, . . . , 4) be the query lines. We

consider the following cases of selectors only, as all other cases are symmetric or trivial.

• J = {1}. We want to minimize

(s1ξ + t1 + η2)(η3 + η4)

1 + ξ2
=

ξ(η3 + η4)

1 + ξ2
s1 +

η3 + η4
1 + ξ2

t1 +
η2(η3 + η4)

1 + ξ2
.

By storing the plane {(X,Y, Z) | Z = ξ(η3+η4)
1+ξ2

X + η3+η4
1+ξ2

Y + η2(η3+η4)
1+ξ2

} associated with each

tuple for 3-d vertical ray shooting as before, we can handle this type of queries in Õ(1) time.

• J = {1, 2}. We want to minimize

(s1ξ + t1 + s2ξ + t2)(η3 + η4)

1 + ξ2
=

ξ(η3 + η4)

1 + ξ2
[s1 + s2] +

η3 + η4
1 + ξ2

[t1 + t2].

This case reduces to 2-d vertical ray shooting.

• J = {1, 3}. This is the most involved case and we will use linearization here [1]. We want to

minimize

(s1ξ + t1 + η2)(s3ξ + t3 + η4)

1 + ξ2
= s1s3 +

1

1 + ξ2
[t1t3 − s1s3] +

ξ

1 + ξ2
[s1t3 + s3t1] +

ξη4
1 + ξ2

s1 +
η4

1 + ξ2
t1 +

ξη2
1 + ξ2

s3 +
η2

1 + ξ2
t3 +

η2η4
1 + ξ2

.

By storing the hyperplane {(X1, . . . , X7) |X7 = 1
1+ξ2

X1+
ξ

1+ξ2
X2+

ξη4
1+ξ2

X3+
η4
1+ξ2

X4+
ξη2
1+ξ2

X5+
η2
1+ξ2

X6 +
η2η4
1+ξ2

} associated with each tuple for 7-d vertical ray shooting, we can handle this

type of queries in Õ(n2/3) time with Õ(n) preprocessing [1, 22].

• J = {1, 2, 3}. This is similar to the previous case. We want to minimize

(s1ξ + t1 + s2ξ + t2)(s3ξ + t3 + η4)

1 + ξ2
= (s1 + s2)s3 +

1

1 + ξ2
[(t1 + t2)t3 − (s1 + s2)s3] +

ξ

1 + ξ2
[(s1 + s2)t3 + s3(t1 + t2)] +

ξη4
1 + ξ2

[s1 + s2] +
η4

1 + ξ2
[t1 + t2].

Again we can use vertical ray shooting, this time in 4-d.

Thus, we can achieve γ = 1/3. 2

The running time for Corollary 7.2 is actually O(
√
npolylog n) (only elementary tools are used).

We will leave the reader with the question of whether the same approach works for similar problems

like the minimum enclosing equilateral triangle (or convex polygon of a fixed angle sequence).

14

8 Some consequences

Faster dynamic data structures can generally lead to faster implementations of static algorithms.

We briefly indicate a few sample applications of our results to illustrate their importance.

The generalized discrete 2-center problem. Given an n-point set P ⊂ IR2, we want to find two

points p1, p2 ∈ P to minimize f(r1, r2), such that every point q ∈ P is within radius r1 of p1 or within

radius r2 of p2. Here, f(·, ·) is some constant-time computable function that is monotone increasing

in both arguments. Agarwal et al. [4] studied the most basic version with f(r1, r2) = max{r1, r2}
and gave an Õ(n4/3) algorithm, but other functions, such as f(r1, r2) = r1 + r2, are reasonable in

some situations. (See [13] for results on the generalized version of the original 2-center problem,

where p1 and p2 can be arbitrary points in IR2.)

An exhaustive algorithm may try each point p1 ∈ P , shrink a ball B centered at p1 with a

decreasing radius r1, and compute r2 = minq∈P maxp∈P\B d(p, q). We need to try n possible radii

r1 for each of the n choices for p1, and if we compute r2 from scratch in O(n logn) time via the

farthest-point Voronoi diagram each time, the total running time would be O(n3 log n). By applying

the method of Corollary 3.2 and noting that P \B is subjected to insertions only as B shrinks (the

insertion sequence is actually off-line), we immediately obtain an improved time bound of Õ(n3−1/6).

In any constant dimension d, the bound is Õ(n
3− 1

(d+1)(dd/2e+1)).

The minimum-diameter spanning tree. An interesting application of the generalized discrete

2-center problem was considered by Ho et al. [20]: given an n-point set P ⊂ IRd, find a spanning tree

that minimizes its diameter (i.e., the maximum distance over all pairs of points, where the “distance”

between p and q refers to the sum of the edge lengths, measured in the Euclidean metric, along the

path connecting p and q in the tree). As Ho et al. showed, the resulting tree turns out to have

very low link diameter (every pair of points is connected by a path with at most three edges), and

consequently, the problem reduces to an additively weighted version of the discrete 2-center problem,

where the objective is to minimize r1 + r2 + d(p1, p2).

We can use the same exhaustive-search algorithm, except that while considering a center can-

didate p1, we assign each point q ∈ P \ B an additive weight of wq = d(p1, q) and maintain

minq∈P maxp∈P\B[d(p, q) + wq] instead (using the method of Corollary 3.2). This results in the

first subcubic time bound (Õ(n
3− 1

(d+1)(dd/2e+1))) for the problem.

Greedy disk cover. Consider the following (NP-hard) geometric version of the set cover problem:

given n points and n balls in IRd, find the smallest number of balls that together cover all the

points. Although various approximation algorithms have been proposed (e.g., see [7]), the most

well-known is perhaps the greedy algorithm (which has a logarithmic approximation factor): choose

the ball that covers the most points, remove the ball and all points inside it, and repeat. The naive

implementation would require O(n) time per iteration, for a total time of O(n2). By applying the

fully dynamic Corollary 4.2, we can reduce the running time of the greedy algorithm to O(n2−
1

d+1).

For unit balls, the time reduces to O(n2−1/d).

15

Klee’s measure problem for unit hypercubes. Klee’s measure problem in IRd seeks the volume

of n axis-parallel boxes. The fastest algorithm known is due to Overmars and Yap from 1991 [26]

and runs in O(nd/2 log n) time. The algorithm basically exploits an orthogonal binary space partition

of the (d− 2)-faces of the boxes, and because such partitions have a worst-case lower bound of size

Θ(nd/2) [12], improvement appears difficult in general.

Better bounds for the special case of unit hypercubes are however possible (e.g., see [18]), because

the union of unit hypercubes has size O(nbd/2c) only [6]. For example, for d = 3, we can afford

to construct the union explicitly [9] and therefore find the volume in O(n logn) time. In higher

dimensions, assuming that there is an algorithm Ad to construct the union and decompose the

interior/exterior into disjoint boxes in Õ(nbd/2c) time (for d > 3, we are unable to find an explicit

reference to such an algorithm), we can solve Klee’s problem for unit hypercubes in Õ(nbd/2c) time—

an improvement over Overmars and Yap’s bound for odd dimensions d.

An interesting question involves the case of unit hypercubes in even dimensions d > 2. By a

standard space sweep, the 4-d Klee’s problem reduces to the off-line maintenance of the volume

of a dynamic 3-d union, and by Theorem 6.1, can therefore be solved in Õ(n3/2) time. This is

surprising considering that the union itself may have quadratic size in IR4. A similar approach works

for higher even dimensions and yields a time bound of Õ(n
dd/2e−1+ 1

dd/2e), assuming the existence of

algorithm Ad−1 (the simple calculations are left for the interested readers to verify).

Hypercubes of possibly different sizes can have unions of complexity Θ(ndd/2e) [6]. Assuming the

existence of an algorithm to construct and decompose the union in near-optimal time, we can also

obtain a similar algorithm, in this case with running time Õ(n
bd/2c+ 1

bd/2c+1), which is an improvement

in odd dimensions d ≥ 5.

Of course, a solution for hypercubes implies a solution for fat axis-parallel boxes, where the edge

lengths of a box differ by at most a constant factor. (Unlike Overmars and Yap’s method, though, our

method does not solve the related problem of computing the depth in an arrangement of boxes [18].)

9 Conclusion

We have shown that a number of basic geometric problems have nontrivial (sublinear) dynamization

results under the semi-online model. More important than the specific results themselves, however,

are our general strategies for attacking different categories of problems; these strategies can serve as

helpful design models to tackle further problems in dynamic computational geometry.

Of course, the ultimate wish is to have fully dynamic, polylogarithmic algorithms, but at present

this appears to be beyond our grasp for any of the problems discussed here. We hope that our results

will inspire more work in this challenging area.

Appendix

It is a well-known fact [19] that the minimum-area rectangle enclosing a set of planar points has one

side flushed to the convex hull, but since we are unable to find a reference stating the analogous fact

for the minimum-perimeter rectangle, we include a quick proof:

Parametrize the rectangle differently, in terms of variables ξ, η, ω1, ω2, ζ:

{(x, y) | ω1 ≤ ξx+ ηy ≤ ω1 + ζ, ω2 ≤ ηx− ξy ≤ ω2 + (1− ζ)}.

16

The perimeter is 2/
√
ξ2 + η2. The problem is to maximize ξ2+η2 subject to the constraints that the

n given points lie in the rectangle—these constraints are linear in ξ, η, ω1, ω2, ζ. To finish, observe

that the maximum of a convex function over a polytope must be located at a vertex, here defined by

five 5-d bounding hyperplanes, two of which are associated with a common side of the rectangle. 2

Acknowledgements

I thank Der-Tsai Lee for (accidentally) mentioning the minimum-diameter spanning tree application

to me.

References

[1] P. K. Agarwal and J. Erickson, Geometric range searching and its relatives, in Advances in Discrete

and Computational Geometry, B. Chazelle, J. E. Goodman, and R. Pollack, eds., AMS, Providence, RI,

1999, pp. 1–56.

[2] P. K. Agarwal and J. Matoušek, On range searching with semi-algebraic sets, Discrete Comput.

Geom., 11:393–416, 1994.

[3] P. K. Agarwal and J. Matoušek, Dynamic half-space range reporting and its applications, Algorith-

mica, 13:325–345, 1995.

[4] P. K. Agarwal, M. Sharir, and E. Welzl, The discrete 2-center problem, Discrete Comput. Geom.,

20:287–305, 1998.

[5] J. Bentley and J. Saxe, Decomposable searching problems I: static-to-dynamic transformation, J.

Algorithms, 1:301–358, 1980.

[6] J.-D. Boissonnat, M. Sharir, B. Tagansky, and M. Yvinec, Voronoi diagrams in higher dimen-

sions under certain polyhedral distance functions, Discrete Comput. Geom., 19:473–484, 1998.

[7] H. Brönnimann and M. T. Goodrich, Almost optimal set covers in finite VC-dimension, Discrete

Comput. Geom., 14:263–279, 1995.

[8] T. M. Chan, A fully dynamic algorithm for planar width, in Proc. 17th ACM Sympos. Comput. Geom.,

pages 172–176, 2001; Discrete Comput. Geom., to appear.

[9] L. P. Chew, D. Dor, A. Efrat, and K. Kedem, Geometric pattern matching in d-dimensional space,

Discrete Comput. Geom., 21:257–274, 1999.

[10] Y.-J. Chiang and R. Tamassia, Dynamic algorithms in computational geometry, Proc. of the IEEE,

80:1412–1434, 1992.

[11] D. Dobkin and S. Suri, Maintenance of geometric extrema, J. ACM, 38:275–298, 1991.

[12] A. Dumitrescu, J. S. B. Mitchell, and M. Sharir, Binary space partitions for axis-parallel seg-

ments, rectangles, and hyperrectangles, in Proc. 17th ACM Sympos. Comput. Geom., pages 141–150,

2001.

[13] D. Eppstein, Dynamic three-dimensional linear programming, ORSA J. Comput., 4:360–368, 1992.

[14] D. Eppstein, Dynamic Euclidean minimum spanning trees and extrema of binary functions, Discrete

Comput. Geom., 13:111–122, 1995.

[15] D. Eppstein, Average case analysis of dynamic geometric optimization, Comput. Geom. Theory Appl.,

6:45–68, 1996.

17

[16] D. Eppstein, Incremental and decremental maintenance of planar width, J. Algorithms, 37:570–577,

2000.

[17] D. Eppstein and J. Erickson, Raising roofs, crashing cycles, and playing pool: applications of a data

structure for finding pairwise interactions, Discrete Comput. Geom., 22:569–592, 1999.

[18] J. Erickson, Klee’s measure problem, http://compgeom.cs.uiuc.edu/˜jeffe/open/klee.html, 1998.

[19] H. Freeman and R. Shapira, Determining the minimum-area encasing rectangle for an arbitrary closed

curve, Commun. ACM, 18:409–413, 1975.

[20] J.-M. Ho, D. T. Lee, C.-H. Chang, and C. K. Wong, Minimum diameter spanning trees and related

problems, SIAM J. Comput., 20:987–997, 1991.

[21] J. Matoušek, Efficient partition trees, Discrete Comput. Geom., 8:315–334, 1992.

[22] J. Matoušek, Reporting points in halfspaces, Comput. Geom. Theory Appl., 2:169–186, 1992.

[23] J. Matoušek, Range searching with efficient hierarchical cuttings, Discrete Comput. Geom., 10:157–182,

1993.

[24] K. Mehlhorn, Data Structures and Algorithms 3: Multi-Dimensional Searching and Computational

Geometry, Springer-Verlag, Heidelberg, 1984.

[25] M. H. Overmars, The Design of Dynamic Data Structures, Lect. Notes in Comput. Sci., vol. 156,

Springer-Verlag, Heidelberg, 1983.

[26] M. Overmars and C.-K. Yap, New upper bounds in Klee’s measure problem, SIAM J. Comput.,

20:1034–1045, 1991.

[27] F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduction, Springer-Verlag,

New York, 1985.

[28] M. Smid, Closest-point problems in computational geometry, in Handbook of Computational Geometry

J. Urrutia and J. Sack, eds., North-Holland, Amsterdam, 2000, pp. 877–935.

18

