
Klee’s Measure Problem Made Easy

Timothy M. Chan∗

August 10, 2013

Abstract

We present a new algorithm for a classic problem in computational geometry, Klee’s measure
problem: given a set of n axis-parallel boxes in d-dimensional space, compute the volume of the
union of the boxes. The algorithm runs in O(nd/2) time for any constant d ≥ 3. Although it
improves the previous best algorithm by “just” an iterated logarithmic factor, the real surprise
lies in the simplicity of the new algorithm.

We also show that it is theoretically possible to beat the O(nd/2) time bound by logarithmic
factors for integer input in the word RAM model, and for other variants of the problem.

With additional work, we obtain an O(nd/3 polylogn)-time algorithm for the important special
case of orthants or unit hypercubes (which include the so-called “hypervolume indicator prob-
lem”), and an O(n(d+1)/3 polylogn)-time algorithm for the case of arbitrary hypercubes or fat
boxes, improving a previous O(n(d+2)/3)-time algorithm by Bringmann.

1 Introduction

Klee’s measure problem is, without exaggeration, easy to state:

Given a set B of n axis-parallel boxes (hyperrectangles) in IRd, compute the volume of

the union of B.

The dimension d is assumed to be a constant in this paper. When we are additionally given a domain

(a box) Γ, the objective is to compute the volume within Γ. Although the combinatorial complexity

of the union may be Θ(nd) in the worst case, the hope is that we may not need to construct the

union itself in order to compute its measure.

First posed by Klee [27] in 1977, the problem harkens back to the early days of computational

geometry. It is a simple exercise to design an O(n log n)-time algorithm for d = 2 [4, 32]. In higher

dimensions, after initial solutions by Bentley and others [4, 34], Overmars and Yap [30] announced

an O(nd/2 log n)-time algorithm at FOCS 25 years ago. For a long time, their result had remained

the record holder, until a few years ago a small improvement in the logarithmic factor was found by

this author [11]: the improved algorithm takes O(nd/22O(log∗ n)) time for any d ≥ 3. The first result

of the present paper is a new algorithm that runs in O(nd/2) time, thus removing the remaining

iterated logarithmic factor completely.

∗Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada (tm-
chan@uwaterloo.ca).

1

Motivation. To explain the significance of the result, one should first note that besides its intrinsic

value, Klee’s problem is related to many other problems about orthogonal objects, not necessarily

about volumes. For example, all known algorithms for Klee’s measure problem (including our new

one) can be adapted to solve the depth problem: find a point p ∈ IRd that maximizes the number of

boxes in B containing p. A special case of both the measure and the depth problem is the coverage

problem: decide whether the union of the boxes in B covers the domain Γ. Given a set of n points

in IRd and a number k, finding a cluster of k points with minimum L∞-diameter can be reduced to

the depth problem [9, 19]. Given two sets of n points in IR3, finding a translation that minimizes the

Hausdorff distance between the two sets can be reduced to the depth problem for O(n2) boxes [13].

The continuous p-center problem on weighted graphs can be reduced to solving a number of coverage

problems for boxes in IRp [5]. The list goes on.

There are also other problems [17, 20, 25] that may not be directly reducible to Klee’s measure

problem but nonetheless can be solved by similar techniques. Also, indirectly, Klee’s measure problem

is linked to certain fundamental combinatorial questions about the decomposition of orthogonal

objects, notably, orthogonal binary space partitions (BSPs) [18, 31].

The exponent d/2 is somewhat unusual in computational geometry, and thus makes the problem

more interesting from the theoretical perspective. There is good reason to believe d/2 is tight.

Specifically, the problem of deciding the existence of a d-clique in a graph with
√
n vertices can

be reduced to the coverage problem for O(n) boxes in IRd [11]. Consequently, the coverage and

measure problems are W [1]-hard with respect to the dimension d. Furthermore, since the current best

algorithm for d-cliques on arbitrary n-vertex graphs that avoids fast matrix multiplication requires

near-O(nd) time, with current knowledge one cannot hope for a purely combinatorial algorithm for

Klee’s measure problem that beats O(nd/2) time, ignoring logarithmic factors.

Simplicity. The main virtue of the new algorithm is not that it improves (very slightly) the

previous result, but is in its simplicity. The author’s previous O(nd/22O(log∗ n))-time algorithm is

more complicated than Overmars and Yap’s, but the new algorithm is even simpler than Overmars

and Yap’s! Traces of the ideas can be found in previous work, but they are distilled in the simplest

form. For example, unlike in existing algorithms, no dynamic data structures are used. The divide-

and-conquer strategy it employs is just a variant of the well-known k-d tree.

By the time one has read two pages past the introduction, one would have already seen the

highlight of the entire paper. (Section 2 requires no prior background, even for a non-geometer.) In

fact, the new algorithm is perfect material for teaching divide-and-conquer.

Polylogarithmic-factor speedups. In certain settings, it turns out that the O(nd/2) bound

can be surpassed by logarithmic factors, as we show in Section 3. For example, for the

depth problem (and in particular the coverage problem), our new approach yields a time

bound of O((nd/2/ logd/2 n)(log logn)O(1)) for d ≥ 3, which improves the author’s previous

O((nd/2/ logd/2−1 n)(log logn)O(1)) bound [11].

We also obtain an O((nd/2/ logd/2−c n)(log log n)O(1)) time bound for d > 2c for the weighted

depth problem: given a set B of weighted boxes in IRd, find a point p ∈ IRd that maximizes the

sum of the weights of the boxes in B containing p. Here, c is an absolute constant, upper-bounded

by 5. This is the first o(nd/2) result which holds for arbitrary real-valued weights. Interestingly, our

algorithm uses Meiser’s point location method in hyperplane arrangements in high dimensions [28],

or alternatively Meyer auf der Heide’s method about linear decision trees [29]. It is the first instance

2

the author is aware of where Meiser’s or Meyer auf der Heide’s results were applied to obtain faster

polynomial-time algorithms in a traditional real RAM model (although more generally linear decision

trees have been used for polylogarithmic-factor speedups before in other context, e.g., in Fredman’s

algorithm for all-pairs shortest paths or min-plus matrix multiplication [22]).

For the original measure problem, we show that speedups are possible in the standard

word RAM model under the reasonable setting of integer input coordinates. We obtain an

O((nd/2/ logd/2−2 n)(log log n)O(1)) time bound for d ≥ 5 under the assumption that n ≥ w, where

w is the word size. For a polynomially bounded universe, we can save one more logarithmic factor.

The idea this time involves the use of the Chinese remainder theorem.

Special cases. In the most technically challenging part of the paper (Section 4), we combine our

approach with additional ideas and obtain the current best results for the measure problem in a

number of special cases. These cases have been actively studied by researchers in recent years.

Among the most important is the case when the boxes are orthants containing (−∞, . . . ,−∞),

i.e., orthants of the form {(x1, . . . , xd) | (x1 ≤) ∧ · · · ∧ (xd ≤)}, where each occurrence of

stands for a possibly different real number. The measure problem for such orthants is sometimes

known by another name, the hypervolume indicator problem. For d ≤ 3, the union of orthants has

linear complexity and can be constructed in O(n log n) time. In higher dimensions, the union has

combinatorial complexity Θ(nbd/2c) in the worst case, but again the hope is to compute the measure

without constructing the union. After some minor improvements in certain dimensions [10], the first

true breakthrough was obtained in 2010 by Bringmann [7], who presented an impressive O(n(d+2)/3)-

time algorithm. Later, Yildiz and Suri [36] gave an O(n(d−1)/2 log n)-time algorithm, which is better

only for very small d. In this paper, we present an Õ(nd/3)-time algorithm,1 which improves all

previous algorithms for all d ≥ 4. Our algorithm actually works for arbitrary orthants, of the form

{(x1, . . . , xd) | (x1 ?) ∧ · · · ∧ (xd ?)}, where each occurrence of stands for a possibly different

real number and each occurrence of “?” stands for either ≤ or ≥.

Bringmann’s algorithm works more generally for the case of arbitrary hypercubes; apparently,

specialization to orthants does not make his algorithm any faster. For arbitrary hypercubes, we

obtain an Õ(n(d+1)/3)-time algorithm for any d ≥ 3, thus strictly subsuming Bringmann’s result.

The improvement is more dramatic in specific small dimensions. For example, we obtain the first

subquadratic algorithm for 4D hypercubes.

Note that the case of unit hypercubes reduces to the case of arbitrary orthants. To see this, build

a grid with unit side length; each unit hypercube intersects only O(1) grid cells, and inside each

grid cell, a unit hypercube is equivalent to an orthant. Furthermore, the case of similar-size fat

boxes—where all side lengths are Θ(1)—easily reduces to unit hypercubes, and the case of arbitrary

fat boxes—where the ratio of the maximum to the minimum side length of each box is Θ(1)—reduces

to arbitrary hypercubes. Our algorithms thus apply to these cases as well.

Both our Õ(nd/3) and Õ(n(d+1)/3) algorithms incorporate ideas similar to Bringmann’s, but

we explain these ideas in a more general “functional” framework which we believe provides better

understanding at the conceptual level.

Remarks. For 3D cubes specifically, Agarwal, Kaplan, and Sharir [2] obtained an Õ(n4/3) time

bound, which was later improved to Õ(n) by Agarwal [1] with a complicated algorithm. It is possible

1Throughout this paper, the Õ notation hides polylogarithmic factors.

3

=⇒

Figure 1: Simplify by readjusting xi values. (The shaded slabs are boxes in Bi.)

to use our approach to get a relatively simple O(n1+ε)-time solution, but since the result is not an

improvement, we omit the details. Also, Yildiz and Suri’s algorithm works more generally, with an

extra logarithmic factor, for so-called 2-grounded boxes of the form {(x1, . . . , xd) | (x1 ≤) ∧ (x2 ≤
) ∧ (≤ x3 ≤) ∧ · · · ∧ (≤ xd ≤)}. To avoid further diversions, we will not investigate this

particular case here.

As observed by Bringmann [8], the measure problem for general boxes in IRd can be reduced

to the measure problem for orthants in IR2d; thus, the problem for orthants or hypercubes remains

W [1]-hard with respect to d.

2 A Simple O(nd/2)-Time Algorithm

For convenience, we change the objective, in the remainder of the paper, to computing the measure

of the complement of the union of B within the given box domain Γ.

Our new algorithm actually follows one of the most obvious divide-and-conquer strategies, as

outlined below:

measure(B,Γ):

0. if |B| is below a constant then return the answer directly

1. simplify B

2. cut Γ into two subcells ΓL and ΓR
3. return measure({boxes of B intersecting ΓL},ΓL) +

measure({boxes of B intersecting ΓR},ΓR)

The twist is that we simplify the input before we cut. We now explain the meaning of “simplify”

and the way we cut.

Step 1: How to simplify. For each i ∈ {1, . . . , d}, let Bi be the set of all boxes of B that are

equivalent to slabs of the form {(x1, . . . , xd) | ≤ xi ≤ } when restricted to Γ. Let B∗ be all the

Bi’s combined, and let B̂ = B−B∗. We describe a way to eliminate the boxes in B∗. First compute

the union of Bi; this reduces to computing the union of 1-dimensional intervals and can be done

by a linear scan after sorting the xi-coordinate values. The union of Bi is a collection of disjoint

slabs orthogonal to xi. Now, readjust all xi values so that each slab’s xi-length is reduced to 0 (see

Figure 1); the readjustment can be done by a linear scan over the xi values.

Clearly, the measure of the complement of the union of B is preserved after this transformation.

After the simplification, the main property to remember is that each remaining box in B̂ must have

4

at least one (d− 2)-face2 intersecting Γ.

Step 2: How to cut. For each (d− 2)-face f that is orthogonal to the i-th and j-th axis (i.e., lies

in a (d− 2)-flat3 of the form {(x1, . . . , xd) | (xi =)∧ (xj =)}), define the weight of f to be 2(i+j)/d

(which is a value between 1 and 4). Cut Γ into two open subcells using the hyperplane x1 = m, where

m is the weighted median of the first coordinates of the (d− 2)-faces orthogonal to the first axis and

intersecting Γ. Then renumber the coordinate system so that the old axes 1, 2, . . . , d correspond to

the new axes d, 1, . . . , d− 1 respectively.

Consider a (d − 2)-face f orthogonal to the i-th and j-th axis, with i, j 6= 1. After the axis

renumbering, its weight changes from 2(i+j)/d to 2(i−1+j−1)/d, i.e., the weight decreases by a factor

of 22/d.

Next consider a (d − 2)-face f orthogonal to the first and j-th axis, with j 6= 1. After the axis

renumbering, its weight changes from 2(1+j)/d to 2(d+j−1)/d, i.e., it increases by a factor of 2(d−2)/d.

However, after the cut, the total weight of the (d−2)-faces orthogonal to the first axis and intersecting

either (open) subcell decreases by a factor of 2, for a net decrease by a factor of 22/d.

Thus, the total weight of all (d− 2)-faces intersecting either subcell drops by a factor of 22/d.

Analysis. Let T (n,Nd−2) be the running time needed for an input which has been pre-sorted in

each dimension, where n is an upper bound on the input size and Nd−2 is an upper bound on the

total weight of all (d− 2)-faces in B intersecting Γ. The simplification step yields

T (n,Nd−2) ≤ T (O(Nd−2), Nd−2) +O(n) (1)

and the cutting step yields

T (n,Nd−2) ≤ 2T (n,Nd−2/2
2/d) +O(n). (2)

Putting the two together and setting T (N) = T (cN,N) for a suitable constant c, we obtain the

recurrence

T (N) ≤ 2T (N/22/d) +O(N), (3)

which immediately solves to T (N) = O(Nd/2) for d ≥ 3.

Remarks.

• This gives a new O(n log n)-time algorithm for d = 2 as well. (In the d = 2 case, the (d − 2)-

faces are points, weights do not matter, and we can always cut vertically.) In contrast, the

textbook algorithm for the 2D Klee’s measure problem [4, 32] is based on a plane sweep and

requires search trees with insertion and deletion operations.

• The hidden constant in the O(nd/2) is actually polynomial in d (it appears to be O(d)).

• The algorithm is simple to the point that some readers should be tempted to implement it. In

fact, similar divide-and-conquer strategies must have been tried by practitioners before, one

would imagine.

2A j-face is a j-dimensional face of an input box; e.g., a (d− 1)-face is a facet, and a 1-face is an edge.
3A j-flat is a j-dimensional flat (affine subspace); e.g., a (d− 1)-flat is a hyperplane, and a 1-flat is a line.

5

• The space used by our recursive algorithm satisfies the recurrence S(N) ≤ S(N/22/d) +O(N)

and is easily seen to be linear. In contrast, Overmars and Yap’s paper [30] required extra tricks

to keep space linear, whereas the author’s previous paper [11] did not analyze space at all.

• Some form of the simplification idea for Klee’s measure problem has appeared before, notably,

in the author’s previous paper [11] (and also [7]). Although in [11] we replace B∗ with O(n)

extra boxes instead of readjusting coordinate values, the result of the simplification is similar.

• In the cutting step, the axis renumbering is just to ease the analysis; equivalently, we are

cycling through the dimensions we choose to cut along. This is just like k-d trees [16, 32].

Another similar cutting approach from the literature is an old binary space partition (BSP)

construction by Paterson and Yao [31]. Instead of sums of weights, they used an expression

involving products raised to some power, resulting in a less trivial analysis.

• Our weighted-median cutting approach implies a BSP construction for n axis-parallel (d− 2)-

flats of size O(nd/2), which easily generalizes to a BSP construction for n axis-parallel j-flats

of size O(nd/(d−j)). The new proof is simpler than previous ones [18, 31].

• Our cutting approach also implies a simple proof for the following result: the union of n

orthants in IRd has at most O(nd/2) complexity and can be decomposed into O(nd/2) cells

of O(1) complexity. This is because in the case of orthants, each Bi can be simplified to at

most two axis-aligned halfspaces. The bound is tight in even dimensions (but unfortunately

not in odd dimensions). There were previous proofs that the union of orthants has O(nbd/2c)

complexity [6]. Agarwal et al. [26] has shown that the union of orthants can be decomposed

into O(nbd/2c) cells but only in the case when the orthants all contain (−∞, . . . ,−∞).

3 Polylogarithmic-Factor Speedups

In this section, we apply the algorithm in Section 2 to different variants of Klee’s measure problem,

and show that under many scenarios, the algorithm can be sped up by logarithmic factors in theory.

In Section 3.1, we work in a standard RAM model with word size w ≥ log n. In Section 3.2, we

assume that the input coordinates and weights are real numbers and work in the standard real-RAM

model; each word may hold an input real number or a (log n)-bit pointer/index; standard arithmetic

operations on real numbers take constant time. In Section 3.3, we assume that the input coordinates

are integers from a bounded universe [U] := {1, . . . , U}, and work in a standard RAM model with

word size w ≥ logU (i.e., each input number fits in a word); standard arithmetic operations, shifts,

and bitwise-logical operations on words take constant time.

3.1 Depth

For the depth problem, we first consider a slight generalization: given a set of boxes and d univariate

step functions h1, . . . , hd, we want a point p = (x1, . . . , xd) that maximizes the number of boxes

containing p plus h1(x1) + · · ·+ hd(xd).

How to simplify. We describe a different way to eliminate B∗, as defined in Section 2. First

project Bi to get intervals on the i-th axis. Let h′i(xi) be the number of such intervals containing xi.

This step function h′i can be computed by a linear scan after sorting. Add h′i to hi. To avoid blowing

6

up the complexity of the new step function hi, let Xi denote the set of xi-coordinate values that

appear among the vertices of B̂. In any range between two consecutive values in Xi, we can replace

the function with the maximum in the range. As a result, the complexity of each step function is

reduced to O(|B̂|).
Furthermore, we may assume that the difference between the maximum Mi and the minimum

mi of the function hi is at most |B̂|, because points p = (x1, . . . , xd) with hi(xi) < Mi − |B̂| cannot

be maximal. By shifting, we may assume that hi has values between 0 and |B̂|.
Thus, (1) still holds, where the “input size” n upper-bounds the number of boxes, the complexity

of the d step functions, and the maximum values of the step functions.

Analysis, with better base cases. By applying (1) and terminating when the subproblem size

drops below some fixed parameter b, we obtain

T (n) ≤ (n/b)d/2(T (b) +O(b)). (4)

Subproblems of input size b can be encoded in O(b log b) bits, since for the depth problem,

coordinate values can be replaced by their ranks, and the input size bounds the maximum value of the

step functions. We can precompute a table storing the answers to all subproblems of size b in 2O(b log b)

time. Then T (b) = O(1). The total time is O((n/b)d/2b+ 2O(b log b)). Setting b = ε log n/ log log n for

a sufficiently small constant ε > 0 yields a time bound of O((nd/2/ logd/2−1 n)(log log n)O(1)).

We can do better still by using word packing tricks. Observe that an input of size n can be packed

into O((n log n)/w) words. By modifying all the linear scans to take time linear in the number of

words (by keeping various lists of boxes and (d−2)-faces sorted along each dimension), we can obtain

T (N) ≤ 2T (N/22/d) +O((N logN)/w).

As a result,

T (n) ≤ (n/b)d/2(T (b) +O(b log b)/w).

With T (b) = O(1), the total time is O((n/b)d/2(b log b)/w). For b = ε log n/ log logn and w ≥ log n,

this is O((nd/2/(w logd/2−1 n))(log log n)O(1)) = O((nd/2/ logd/2 n)(log log n)O(1)).

Remarks. The previous paper [11] has already used table lookups or word operations to obtain

polylogarithmic-factor improvements for the depth problem, but the new result is better by about

one logarithmic factor. The improvement stems from the ability to avoid dynamic data structures

in our simpler algorithm, unlike the algorithm in [11].

As mentioned in the introduction, there is a reduction from the d-clique problem for
√
n-vertex

graphs to the coverage problem [11]. It is worth comparing our result with known combinatorial

algorithms for the clique problem that achieve polylogarithmic-factor speedups [35].

3.2 Weighted Depth

For the weighted depth problem, a similar simplification step works, although we no longer care

about the maximum values of the step functions.

By (4), we get O(n/b)d/2 subproblems of size b. Subproblems can no longer be encoded in a

small number of bits for real-weighted input, so we proceed differently. Define the signature of a

subproblem to be its input after replacing coordinate values with ranks; the signature has O(b log b)

7

bits. Collect all subproblems with a common signature together in a common list; the number of

lists is at most bO(b).

Subproblems with a common signature reduce to evaluating a common O(b)-variate function

f over the weights, where f is the upper envelope (pointwise maximum) of at most O(bd) linear

functions. This is because the signature determines the combinatorial structure of the arrangement

of boxes, and the weighted depth in each of the O(bd) cells in the arrangement is a sum of weights.

Since we are evaluating the same function over a long list of O(b)-tuples, it makes sense to preprocess

the function to speed up querying.

Lemma 3.1 We can preprocess N linear functions f1, . . . , fN in b variables in (bN)O(b) time so that

f(x) := max{f1, . . . , fN}(x) can be evaluated in O(bc logN) time for any given x ∈ IRb, where c is

an absolute constant.

Proof: This problem reduces to point location in an arrangement of O(N2) hyperplanes {x ∈
IRb | fi(x) = fj(x)} over all i, j, since in each cell of the arrangement, the sign of fi(x) − fj(x)

is determined for all i, j. Building on previous work by Clarkson [14], Meiser [28] gave a point

location algorithm in any high nonconstant dimension b with O(b5 logN) query time, thus achieving

c = 5. He stated an expected preprocessing time bound of O(NO(b)), although this ignored hidden

factors of the form bO(b). (The preprocessing algorithm can be derandomized using deterministic

ε-net constructions [12].)

Alternatively, in the framework of linear decision trees, Meyer auf der Heide [29] gave a point

location algorithm with O(b4 log b) query time, under the assumption that the coefficients of the

linear functions are integers bounded by O(1) (which holds in our application). He did not state a

preprocessing time bound, however. 2

In our application, we need bO(b) invocations of Lemma 3.1, with N = O(bd). So, we obtain

T (b) = O(bc log b), after a preprocessing time of bO(b). The total time is O((n/b)d/2bc log b + bO(b)).

Setting b = ε log n/ log log n yields a time bound of O((nd/2/ logd/2−c n)(log log n)O(1)).

3.3 Measure in the Word RAM

By (4), we get O(n/b)d/2 subproblems of size b. For the measure problem, subproblems with a

common signature reduce to evaluating a common O(b)-variate polynomial function with degree d

and at most O(bd) terms. This is because we can form a grid with O(bd) cells from the coordinates

along each dimension, and the signature determines which grid cells are part of the union of B;

the measure of each grid cell is a product of d side lengths. Since we are evaluating the same

function over a long list of O(b)-tuples, it seems conceivable that the amortized cost per query can

be lowered, at least when the final objective is to report the sum. More precisely, the underlying

problem is formulated in the lemma below. For integer input in the word RAM model, we present

three solutions: the basic idea is to use the Chinese remainder theorem to reduce the universe size

before doing table lookups; in the second and third solutions, we further reduce the number of table

lookups by word packing and sorting.

Lemma 3.2 Given a b-variate polynomial f with O(1) degree and O(1)-bounded integer coefficients,

and given m b-tuples x(1), . . . , x(m) ∈ [U]b, where the elements of the tuples are all from a set X of

n numbers, we can compute S =
∑m
`=1 f(x(`)) in

8

1. O(m logU/ log logU +mb log b+ n logU/ log logU + 2O(b log logU)) time, or

2. O(mb2 log logU + n logU/ log logU + 2O(b log logU)) time, or

3. O(mb2 log log logU +mb log logU + n logU/ log log logU + 2O(b log log logU) log2 U) time.

Proof: Let p1, . . . , pk be k primes from a smaller universe [u] so that the product exceeds U c

for a sufficiently large constant c. By the prime number theorem, there exist such primes with

u = Θ(logU) and k = Θ(logU/ log u).

First precompute a table of f(x) values for all x ∈ [u]b in O(bO(1)ub) time. For each x ∈ X,

precompute (x mod p1, . . . , x mod pk), which we refer to as the Chinese-remainder (CR) code of x.

Each CR code requires O(k log u) = O(logU) bits, i.e., O(1) words. The time required is O(nk).

Solution 1. Consider a fixed ` ∈ {1, . . . ,m}. We take the CR codes of the b elements of x(`), and

rearrange the bits to get the b-tuples x(`) mod pj for each j ∈ {1, . . . , k}. The rearrangement amounts

to doing a “transpose” operation on O(b) words, which takes O(b log b) standard word operations

(e.g., see [33]). We can then compute f(x(`)) mod pj = f(x(`) mod pj) mod pj by table lookup for

each j, and reconstruct f(x(`)) by the Chinese remainder theorem; the time required over all ` is

O(mk).

Solution 2. Let t = logU/(b log u). Consider a group of t indices `. Each b-tuple x(`) mod pj
occupies O(b log u) bits. Rearrange the bits to get all t b-tuples x(`) mod pj in O(1) words, for each

j. The rearrangement reduces to a transpose operation on O(tb) words, which takes O((tb) log(tb))

time.

Now consider a fixed j ∈ {1, . . . , k}. Sort the list of all m b-tuples x(`) mod pj , which are packed

in O(m/t) words. In general, sorting b′-bit numbers packed in O(m′) words can be done in O(m′b′)

time (by a modified mergesort [3], since merging takes time linear in the number of words and b′ levels

of merging suffice). Thus, our list can be sorted in O((m/t)b log u) time. For each of the O(m/t)

words in the sorted list, if all b-tuples in the word are identical to, say, x, we can do one table lookup

for f(x), multiply by the number of b-tuples in the word, and add the result to a running total Sj .

On the other hand, if the word contains more than one distinct b-tuple, we do a table lookup for

f(x) for each such b-tuple x, and add to Sj . Since the number of words of the latter kind is at most

2O(b log u), the additional time is at most O(m/t+ 2O(b log u) logU).

We can then obtain S mod pj = Sj mod pj , and reconstruct S by the Chinese remainder theorem.

The total time is O(k(m/t)b log u + k2O(b log u) logU + mb log(tb) + nk + bO(1)ub) = O(mb2 log u +

2O(b log u) log2 U +mb log logU + n logU/ log u+ bO(1)ub).

Solution 3. We can further speed up the second solution by using a 2-level CR code. Namely,

let q1, . . . , qk′ be primes from [u′] such that the product exceeds uc, with u′ = O(log u) and k′ =

O(log u/ log u′). The new CR code of x contains (x mod pi) mod qj for all i ∈ {1, . . . , k} and j ∈
{1, . . . , k′}. We can reconstruct S by two levels of applications of the Chinese remainder theorem.

The total time is similarly O(mb2 log u′+ 2O(b log u′) log2 U +mb log logU + n logU/ log u′+ bO(1)u′b),

now with u′ = O(log logU). (Of course, extending CR codes to more levels would yield further but

smaller improvements.) 2

In our application, we need bO(b) invocations of Lemma 3.2, where the m’s sum

to O(n/b)d/2. Solution 1 takes time O((n/b)d/2 logU/ log logU + (n/b)d/2b log b +

9

bO(b)n logU/ log logU + bO(b)2O(b log logU)). Setting b = ε log n/ log logU yields a time bound

of O((nd/2/ logd/2 n) logU(log logU)O(1)).

Alternatively, Solution 3 takes time O((n/b)d/2b2 log log logU + (n/b)d/2b log logU +

bO(b)[n logU/ log log logU + 2O(b log log logU) log2 U]). Assume n ≥ w, and thus U ≤ 2n. Set-

ting b = εmin{log n/ log log n, log n/ log log logU} yields O((nd/2/ logd/2−2 n)(log log n)O(1)) time for

d ≥ 5.

Remarks. Whether similar speedups are possible in the real RAM model (as opposed to the integer

RAM model) would depend on the algebraic complexity of S =
∑m
i=1 f(x(`)). In our application,

f is a multilinear function, specifically a d-linear function over O(b) variables. It is not difficult to

see that computing S in this case can be reduced to the multiplication of an O(bdd/2e) × m and

m× O(bbd/2c) matrix. However, this step would require at least Ω(mbdd/2e) time (known results on

rectangular matrix multiplication [15, 23] can in fact achieve near mbdd/2e time when b = o(mε));

unfortunately this bound is too big to yield o(nd/2) time at the end.

More concretely, for d = 3, the underlying problem is to compute a sum of the form∑m
`=1

∑b
i=1

∑b
j=1

∑b
k=1wijkxi`yj`zk`. At first glance, this expression appears different from the bilin-

ear or trilinear forms usually encountered in the matrix multiplication literature.

In some very vague sense, the difference between the weighted depth and the measure problem

is akin to the difference between min-plus matrix multiplication and standard matrix multiplication.

(In fact, reductions from min-plus matrix multiplication to dynamic weighted depth in 2D [24],

and from dynamic standard matrix-vector multiplication [21] to dynamic measure in 2D [11], have

been mentioned in the literature. And there is also the aforementioned connection with the clique

problem, which is related to matrix multiplication.) As we have been successful in getting speedups

for real-weighted depth in Section 3.2, it would be intriguing if algebraic techniques for fast matrix

multiplication could get polylogarithmic-factor speedups (or even more boldly, reduce the exponent

d/2) for Klee’s measure problem for real-valued input.

4 Faster Algorithms for Special Cases

We now explore how to adapt the approach in Section 2 to get faster algorithms for the measure

problem in the cases of arbitary orthants and arbitrary hypercubes. As noted in the introduction,

this would imply improved algorithms for similar-size fat boxes and arbitrary fat boxes respectively.

It should be noted that the algorithms in this section are not applicable to the depth problem—

this is to be expected, because the depth problem for general boxes can be reduced to the depth

problem for orthants (an exercise left for the reader).

In Section 2, we have shown how to eliminate all boxes Bi that are equivalent to slabs of the form

{(x1, . . . , xd) | ≤ xi ≤ }. In the next subsection, we first describe a more sophisticated simplifi-

cation procedure for boxes of another type. This procedure is the key behind our two subsequent

algorithms.

4.1 Simplification of 2-Sided Orthants

For each i, j ∈ {1, . . . , d} with i 6= j, let Bij be the set of all boxes in B that are equivalent to 2-sided

orthants of the form {(x1, . . . , xd) | (xi ?) ∧ (xj ?)} when restricted to Γ, where each occurrence

10

Figure 2: The union of Bij .

of “?” may be ≤ or ≥. Redefine B∗ as all the Bi’s and Bij ’s combined, and let B̂ = B − B∗. We

describe a way to reduce the number of boxes in B∗ while preserving the measure of the union of B.

We take a “functional” approach. Let [E] denote the indicator function for a predicate E. The

measure problem is equivalent to computing the integral of [(x1, . . . , xd) 6∈
⋃
B] over Γ. We consider

a slight generalization of the problem:

Problem 4.1 Given a set B of boxes and univariate step functions h1, . . . , hd (“density” functions)

of total complexity O(n), compute the integral of [(x1, . . . , xd) 6∈
⋃
B] · h1(x1) · · ·hd(xd) over Γ.

This generalized problem can be reduced back to the original problem by readjusting the co-

ordinate values: namely, between two consecutive xi values, say, α−, α+, that appear among the

vertices of B, we can reset the length of the xi-interval [α−, α+] to
∫ α+

α− hi(ξ) dξ (if hi may take on

negative values, we can separate into negative and positive components first). The elimination of Bi
as described in Section 2 can be viewed alternatively as zeroing out some hi(xi) values.

For each i, j, compute the union of Bij (see Figure 2); this reduces to four instances of the 2D

maxima problem [32] and can be done in linear time after sorting. We can express the complement

of the union as {(x1, . . . , xd) | (xj ≥ f−(xi)) ∧ (xj ≥ g−(xi)) ∧ (xj ≤ f+(xi)) ∧ (xj ≤ g+(xi))}
where f−, f+ are univariate monotone-decreasing step functions and g−, g+ are univariate monotone-

increasing step functions. This motivates the following definitions:

Definition 4.2 A basic predicate E(x1, . . . , xd) is a conjunction of O(d2) conditions, each of which

is the form xj ? f(xi) where f is a monotone step function.

A basic function is a function of the form F (x1, . . . , xd) = [E(x1, . . . , xd)] ·h1(x1) · · ·hd(xd) where

E is a basic predicate and h1, . . . , hd are piecewise-polynomial functions (density functions). The

complexity of F refers to the total complexity (number of pieces) of all the monotone step functions

in E and of the density functions h1, . . . , hd. The degree of F refers to the maximum degree of

h1, . . . , hd.

In the B̂ = ∅ case, Problem 4.1 reduces to integrating a basic function that corresponds to B∗.

More generally:

Observation 4.3 Problem 4.1 is equivalent to computing the integral of a basic function

F (x1, . . . , xd) over the complement of the union of B̂, where F has complexity O(n) and degree 0.

This reformulation allows us to avoid the complications of visualizing in higher dimensions, but

instead approach the problem simply by mechanical manipulations of formulas. Our definition of

basic functions is designed in such a way that they satisfy a closure property under integration—this

will be the key lemma.

11

Lemma 4.4 If F is a basic function of complexity n and degree s, then F̂ (x1, . . . , xd) =∫ xd
−∞ F (x1, . . . , xd−1, ξ) dξ is a sum of O(1) basic functions of complexity O(n) and degree s + 1,

constructible in linear time.

Proof: Certain elementary facts about univariate functions will be useful; for example, the inverse

of a monotone step function and the composition of two monotone step functions are monotone

step functions; the pointwise minimum of two monotone increasing step functions is a monotone

increasing step function; the product of a piecewise polynomial function and a step function is a

piecewise polynomial function; the integral ĥ(x) =
∫ x
−∞ h(ξ) dξ of a degree-s piecewise polynomial

function h is a degree-(s + 1) piecewise polynomial function. These new functions have complexity

linear in the complexities of the given functions, and can be generated in linear time.

To prove the lemma, we describe a series of straightforward algebraic manipulations to rewrite

the function F (x1, . . . , xd−1, ξ) · [ξ ≤ xd], to make integration over the variable ξ easier later:

• First rewrite each condition of the form xi ? f(ξ) as ξ ? f−1(xi). (The direction of the second

“?” may be reversed depending on whether f is monotone increasing or decreasing.)

• Next apply the following rule repeatedly: rewrite [(ξ ≤ f(xi)) ∧ (ξ ≤ g(xj))] as [(f(xi) ≤
g(xj)) ∧ (ξ ≤ f(xi))] + [(f(xi) > g(xj)) ∧ (ξ ≤ g(xj))]. (This holds even when j = d and g

is the identity function.) Application of this rule increases the number of terms in the sum,

but each term has one fewer occurrence of the variable ξ. A similar rule holds for rewriting

[(ξ ≥ f(xi)) ∧ (ξ ≥ g(xj))]. At the end, each term will have only one condition of the form

ξ ≥ f(xi) and one of the form ξ ≤ g(xj).

• The preceding rule creates new conditions of the form f(xi) ? g(xj), not technically allowed

in the definition of a basic predicate. To fix this, rewrite f(xi) ? g(xj) as xj ? g−1(f(xi)) if

i 6= j. If i = j, then [f(xi) ? g(xi)] is just a step function in xi, which can be multiplied with

the density function for xi.

• Finally, to reduce the number of conditions to O(d2) in each term, rewrite (xi ≤ f(xj))∧ (xi ≤
g(xj)) as xi ≤ min{f, g}(xj) for any two monotone increasing step functions. A similar rule

holds for two monotone decreasing step functions, and for ≥ instead of ≤.

The number of rewriting steps is O(1). At the end, F (x1, . . . , xd−1, ξ) · [ξ ≤ xd] becomes a sum of

O(1) terms, each of which is of the form G(x1, . . . , xd) · [f(xi) ≤ ξ ≤ g(xj)] · h(ξ) for some basic

function G and some i, j. (It could happen that j = d and g is the identity function.) The integral of

such a term over ξ is G(x1, . . . , xd) · [f(xi) ≤ g(xj)] · (ĥ(g(xj))− ĥ(f(xi))), where ĥ(x) =
∫ x
−∞ h(ξ) dξ.

This expression is a sum of basic functions (after recalling the rewriting rule for f(xi) ? g(xj)). 2

Applying Lemma 4.4 d times, we can integrate a basic function F (x1, . . . , xd) in linear time (after

sorting) and thus solve Problem 4.1 in the B̂ = ∅ case.

More generally, when B̂ 6= ∅, we invoke Observation 4.3. We describe a way to replace the basic

function F with a new function F̃ that has smaller complexity, such that the integrals of F (x1, . . . , xd)

and F̃ (x1, . . . , xd) over the complement of the union of B̂ coincide.

Let Xi be the set of xi-coordinate values that appears among the vertices of B̂. Draw an axis-

aligned hyperplane {(x1, . . . , xd) | xi = α} for every α ∈ Xi and for every i ∈ {1, . . . , d}; the result is

a grid. Since the union of B̂ is a union of selected cells from the grid, it suffices to ensure that the

integrals of F and F̃ over every grid cell coincide.

12

To this end, let π−i (x) be the largest value in Xi that is less than x, and π+i (x) be the smallest

value in Xi that is greater than x; these “successor” and “predecessor” functions are monotone step

functions. Our construction of F̃ is as follows:

F̃ (x1, . . . , xd) = 1
(π+(x1)−π−(x1))···(π+(xd)−π−(xd))

∫ π+
1 (x1)

π−i (x1)
· · ·
∫ π+

d
(xd)

π−
d
(xd)

F (ξ1, . . . , ξd) dξd · · · dξ1.

To understand the “magic” behind this formula, first note that within any grid cell, π−(xi)

and π+(xi) are constants for all i, and thus F̃ is constant as well. The volume of the cell

is (π+(x1) − π−(x1)) · · · (π+(xd) − π−(xd)). So the integral of F̃ over the cell is equal to∫ π+
1 (x1)

π−i (x1)
· · ·
∫ π+

d
(xd)

π−
d
(xd)

F (ξ1, . . . , ξd) dξd · · · dξ1, i.e., it is equal to the integral of F over the cell—exactly

as desired!

We claim that F̃ is a sum of O(1) basic functions. To see this, first note that∫ π+
d
(xd)

π−
d
(xd)

F (x1, . . . , xd−1, ξ) dξ =
∫ π+

d
(xd)

−∞ F (x1, . . . , xd−1, ξ) dξ−
∫ π−

d
(xd)

−∞ F (x1, . . . , xd−1, ξ) dξ is a sum

of O(1) basic functions by Lemma 4.4 and by composition with the monotone step functions π−d and

π+d . Repeating d times and multiplying the monotone step function 1
π+(xi)−π−(xi) with the density

function for xi for each i yield the claim. Furthermore, since π−i (xi) and π+i (xi) take on only O(|B̂|)
different values, all the monotone step functions arising in the basic predicates for F̃ have complexity

O(|B̂|) after composition with the π−i ’s and π+i ’s; the density functions also have complexity O(|B̂|)
and are step functions with degree 0 after composition with the π−i ’s and π+i ’s. Finally, we can

invoke Observation 4.3 to get back O(1) instances of the measure problem with O(|B̂|) input size.

To summarize, we have proved the following:

Lemma 4.5 Let B∗ be the subset of all boxes of B that are of the form {(x1, . . . , xd) | xi ? } or

{(x1, . . . , xd) | (xi ?)∧ (xj ?)} when restricted to Γ. Let B̂ = B−B∗. In O(n) time after sorting,

we can reduce the measure problem for B to O(1) instances of the measure problem where in each

instance the boxes in B∗ are replaced by O(|B̂|) boxes of the same form.

Remarks. Bringmann [7] described a similar procedure for computing the measure of B∗, but not

for the simplification of B∗ when there are additional boxes in B̂. Our functional approach is thus

more powerful.

4.2 An Õ(nd/3)-Time Algorithm for Arbitrary Orthants

We are now ready to present our algorithm for the case when the input boxes are arbitrary orthants.

We follow the same basic approach from Section 2.

How to simplify. We apply the procedure from Lemma 4.5. Observe that the unsimplified boxes

in B̂ must have at least one (d− 3)-face intersecting Γ. Let T (n,Nd−3) be the running time needed

for an input where n is an upper bound on the input size and Nd−3 is an upper bound on the total

weight of all (d− 3)-faces of B intersecting Γ. Lemma 4.5 yields

T (n,Nd−3) ≤ O(1)T (O(Nd−3), Nd−3) +O(n).

13

How to cut. We use the cutting step from Section 2, but now with the weighted median of the

(d − 3)-faces. The weight of a (d − 3)-face orthogonal to the i-th, j-th, and k-th axis is defined as

2(i+j+k)/d. By the same argument, Nd−3 decreases by a factor of 23/d in each subcell, and so

T (n,Nd−3) ≤ 2T (n,Nd−3/2
3/d) +O(n).

Analysis. Suppose that we apply the simplification procedure only after roughly every log2(r
d)

levels of cutting. Then setting T (N) = T (cN,N) for a suitable constant c, we obtain

T (N) ≤ O(rd)T (N/r3) +O(rdN).

By choosing the parameter r = N δ for a small constant δ > 0, the recurrence solves to T (N) =

O(Nd/3 logO(1)N) for d ≥ 4.

Remarks. nd/3 seems to be the best possible with this approach. To get nd/4, we would need to

simplify 3-sided orthants and work with monotone functions in two variables, but these functions

may not have nice inverses.

4.3 An Õ(n(d+1)/3)-Time Algorithm for Arbitrary Hypercubes

Finally, we present our algorithm for the case when the input boxes are arbitrary hypercubes.

How to simplify. We apply the procedure from Lemma 4.5. Some boxes in B̂ may be of the form

{(x1, . . . , xd) | (≤ xi ≤) ∧ (xj ?)} or {(x1, . . . , xd) | (≤ xi ≤) ∧ (≤ xj ≤)} when restricted

to Γ; we say that these boxes are bad , and their faces are similarly bad. All other boxes in B̂ must

have at least one (d− 3)-face intersecting Γ.

Let T (n, nd−2, n
′
d−2, nd−3) be the running time needed for an input where n is an upper bound on

the input size, ni is an upper bound on the number of i-faces in B intersecting Γ for i ∈ {d−2, d−3},
and n′d−2 is an upper bound on the number of bad (d − 2)-faces in B intersecting Γ. Lemma 4.5

yields

T (n, nd−2, n
′
d−2, nd−3) ≤ O(1)T

(
O(n′d−2 + nd−3), O(n′d−2 + nd−3), n

′
d−2, nd−3

)
+O(n). (5)

(One technicality: it is better to avoid adjusting coordinate values, but instead adjust density func-

tions, to ensure that the input boxes remain hypercubes.)

How to cut. For the cutting step, instead of weighted medians, we switch back to Overmars and

Yap’s original approach [30]:

Lemma 4.6 Given a set of n axis-parallel flats (of different dimensions) inside a d-dimensional

space, and given a parameter r, we can divide space into O(rd) cells so that each cell intersects

O(n/rd−i) i-flats. The construction takes O(rdn) time.

Proof: We adapt the presentation from the author’s previous paper [11] of Overmars and Yap’s

approach: Vertically project the input onto the first d− 1 dimensions and recursively construct the

partition. Then lift each cell to get a vertical column γ along the d-th dimension. Partition γ with

O(r) cuts using hyperplanes orthogonal to the d-th axis, so that the number of i-flats orthogonal to the

14

d-th axis and intersecting each subcell is a factor of r less than that for γ, for each i ∈ {0, . . . , d− 1}.
Clearly, the total number of cells in this construction is O(rd).

Let n
(d)
i be the maximum number of i-flats intersecting each cell in this d-dimensional construc-

tion. If an i-flat f is not orthogonal to the d-th axis, the vertical projection of f is an (i− 1)-flat. If

f is orthogonal to the d-th axis, the vertical projection of f is an i-flat. We therefore have

n
(d)
i ≤ n

(d−1)
i−1 +

n
(d−1)
i

r
.

With the trivial base cases, it follows by induction that n
(d)
i = O(n/rd−i). 2

The lemma immediately implies

T (n, nd−2, n
′
d−2, nd−3) ≤ O(rd)T

(
n,O

(
nd−2
r2

)
, O

(
nd−2
r2

)
, O

(
nd−3
r3

))
+O(rdn). (6)

How to cut: another option. The preceding cutting procedure is not specialized to reduce the

number n′d−2 of bad (d− 2)-faces. To this end, we suggest another cutting procedure. The idea is to

cut along the longest dimension of Γ. More precisely, let `i(b) denote the xi-length of a box b; for a

hypercube b, we can drop the subscript. Let i∗ maximize `i∗(Γ). Compute r−1 quantiles among the

xi∗-th coordinate values of the bad (d− 2)-faces. Cut Γ into r subcells using a hyperplane xi∗ = m

at each quantile m.

Consider a bad box b that is equivalent to a box of the form {(x1, . . . , xd) | (≤ xi ≤)∧(xj ?)}
or {(x1, . . . , xd) | (≤ xi ≤) ∧ (≤ xj ≤)} when restricted to Γ, where the xi-projection

of b lies in the xi-projection of Γ. Then `(b) < `i(Γ). On the other hand, `(b) ≥ `k(Γ) for all

k ∈ {1, . . . , d} − {i, j}. It follows that i∗ is either i or j. Thus, after cutting into r subcells along

the i∗-th axis, the number of bad (d− 2)-faces intersecting each subcell drops by a factor of r. Note

that some boxes that have (d − 3)-faces intersecting Γ could now become bad in a subcell. This

alternative cutting procedure yields

T (n, nd−2, n
′
d−2, nd−3) ≤ r T

(
n, nd−2,

n′d−2
r

+O(nd−3), nd−3

)
+O(rn). (7)

Analysis. Setting T (n) = T (n, n, n, n) and applying (6), (7), and (5) in that order, we obtain

T (n) ≤ O(rd+1)T (O(n/r3)) +O(rd+1n).

By choosing the parameter r = nδ for a small constant δ > 0, the recurrence solves to T (n) =

O(n(d+1)/3 logO(1) n) for d ≥ 3.

Remarks. The reason we revert to Overmars and Yap’s less elegant approach instead of our

weighted-median cutting approach is that we need to control more than one parameter simulta-

neously (nd−2 and nd−3). Overmars and Yap’s approach has extra constant factors in the number of

subproblems in (6), which causes extra polylogarithmic factors during recursion, but this is inconse-

quential, since there is already an extra constant factor in the number of subproblems in (5).

To summarize in a few words, the improvement over Bringmann’s algorithm stems from the same

basic idea from our algorithm in Section 2: namely, simplify the input before recursion.

15

References

[1] P. K. Agarwal. An improved algorithm for computing the volume of the union of cubes. In Proc. 26th
Sympos. Comput. Geom., pages 230–239, 2010.

[2] P. K. Agarwal, H. Kaplan, and M. Sharir. Computing the volume of the union of cubes. In Proc. 23rd
Sympos. Comput. Geom., pages 294–301, 2007.

[3] S. Albers and T. Hagerup. Improved parallel integer sorting without concurrent writing. Inf. Comput,
136:25–51, 1997.

[4] J. L. Bentley. Algorithms for Klee’s rectangle problem. Unpublished manuscript, 1977.

[5] B. K. Bhattacharya and Q. Shi. Application of computational geometry to network p-center location
problems. In Proc. 20th Canad. Conf. Comput. Geom., pages 119–122, 2008.

[6] J.-D. Boissonnat, M. Sharir, B. Tagansky, and M. Yvinec. Voronoi diagrams in higher dimensions under
certain polyhedral distance functions. Discrete Comput. Geom., 19:473–484, 1998.

[7] K. Bringmann. An improved algorithm for Klee’s measure problem on fat boxes. Comput. Geom. Theory
Appl., 45:225–233, 2012.

[8] K. Bringmann. Bringing order to special cases of Klee’s measure problem. Technical report, 2013.

[9] T. M. Chan. Geometric applications of a randomized optimization technique. Discrete Comput. Geom.,
22:547–567, 1999.

[10] T. M. Chan. Semi-online maintenance of geometric optima and measures. SIAM J. Comput., 32:700–716,
2003.

[11] T. M. Chan. A (slightly) faster algorithm for Klee’s measure problem. Comput. Geom. Theory Appl.,
43:243–250, 2010.

[12] B. Chazelle and J. Matousek. On linear-time deterministic algorithms for optimization problems in fixed
dimension. J. Algorithms, 21:579–597, 1996.

[13] L. P. Chew, D. Dor, A. Efrat, and K. Kedem. Geometric pattern matching in d-dimensional space.
Discrete Comput. Geom., 21:257–274, 1999.

[14] K. L. Clarkson. A randomized algorithm for closest-point queries. SIAM J. Comput., 17:830–847, 1988.

[15] D. Coppersmith. Rapid multiplication of rectangular matrices. SIAM J. Comput., 11:467–471, 1982.

[16] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational Geometry: Algorithms and
Applications. Springer-Verlag, Berlin, Germany, 3rd edition, 2008.

[17] D. P. Dobkin, D. Eppstein, and D. P. Mitchell. Computing the discrepancy with applications to super-
sampling patterns. ACM Trans. Graph., 15:354–376, 1996.

[18] A. Dumitrescu, J. S. B. Mitchell, and M. Sharir. Binary space partitions for axis-parallel segments,
rectangles, and hyperrectangles. Discrete Comput. Geom., 31:207–227, 2004.

[19] D. Eppstein and J. Erickson. Iterated nearest neighbors and finding minimal polytopes. Discrete Comput.
Geom., 11:321–350, 1994.

[20] D. Eppstein and S. Muthukrishnan. Internet packet filter management and rectangle geometry. In Proc.
12th ACM–SIAM Sympos. Discrete Algorithms, pages 827–835, 2001.

[21] G. S. Frandsen, J. P. Hansen, and P. B. Miltersen. Lower bounds for dynamic algebraic problems. Inf.
Comput., 171:333–349, 2001.

[22] M. L. Fredman. New bounds on the complexity of the shortest path problem. SIAM J. Comput., 5:49–60,
1976.

16

[23] F. Le Gall. Faster algorithms for rectangular matrix multiplication. In Proc. 53rd IEEE Sympos. Found.
Comput. Sci., pages 514–523, 2012.

[24] J. Galtier and P. Penna. Complexity links between matrix multiplication, Klee’s measure, and call access
control for satellite constellations. Technical report, INRIA, 2001.

[25] S. Har-Peled, V. Koltun, D. Song, and K. Y. Goldberg. Efficient algorithms for shared camera control.
In Proc. 19th Sympos. Comput. Geom., pages 68–77, 2003.

[26] H. Kaplan, N. Rubin, M. Sharir, and E. Verbin. Efficient colored orthogonal range counting. SIAM J.
Comput., 38:982–1011, 2008.

[27] V. Klee. Can the measure of ∪n1 [ai, bi] be computed in less than O(n log n) steps? Amer. Math. Monthly,
84:284–285, 1977.

[28] S. Meiser. Point location in arrangements of hyperplanes. Inf. Comput., 106:286–303, 1993.

[29] F. Meyer auf der Heide. A polynomial linear search algorithm for the n-dimensional knapsack problem.
J. ACM, 31:668–676, 1984.

[30] M. Overmars and C.-K. Yap. New upper bounds in Klee’s measure problem. SIAM J. Comput., 20:1034–
1045, 1991.

[31] M. Paterson and F. F. Yao. Optimal binary space partitions for orthogonal objects. J. Algorithms,
13:99–113, 1992.

[32] F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer-Verlag, New
York, 1985.

[33] M. Thorup. Randomized sorting in O(n log log n) time and linear space using addition, shift, and bit-wise
boolean operations. J. Algorithms, 42:205–230, 2002.

[34] J. van Leeuwen and D. Wood. The measure problem for rectangular ranges in d-space. J. Algorithms,
2:282–300, 1981.

[35] V. Vassilevska. Efficient algorithms for clique problems. Inform. Process. Lett., 109:254–257, 2009.

[36] H. Yildiz and S. Suri. On Klee’s measure problem for grounded boxes. In Proc. 28th Sympos. Comput.
Geom., pages 111–120, 2012.

17

