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Abstract. Jumbled indexing is the problem of indexing a text T for
queries that ask whether there is a substring of T matching a pattern
represented as a Parikh vector, i.e., the vector of frequency counts for
each character. Jumbled indexing has garnered a lot of interest in the last
four years; for a partial list see [2, 6, 13, 16, 17, 20, 22, 24, 26, 30, 35, 36].
There is a naive algorithm that preprocesses all answers in O(n2|Σ|) time
allowing quick queries afterwards, and there is another naive algorithm
that requires no preprocessing but has O(n log |Σ|) query time. Despite
a tremendous amount of effort there has been little improvement over
these running times.
In this paper we provide good reason for this. We show that, under
a 3SUM-hardness assumption, jumbled indexing for alphabets of size
ω(1) requires Ω(n2−ε) preprocessing time or Ω(n1−δ) query time for any
ε, δ > 0. In fact, under a stronger 3SUM-hardness assumption, for any
constant alphabet size r ≥ 3 there exist describable fixed constant εr and
δr such that jumbled indexing requires Ω(n2−εr ) preprocessing time or
Ω(n1−δr ) query time.

1 Introduction

Equal length strings are said to jumble-match if they are commutatively equiv-
alent (sometimes called Abelian equivalent), i.e., if one string can be obtained
from the other by permuting its characters. A jumble match can be described
using Parikh vectors which are vectors maintaining the frequency count of each
alphabet character. Two strings jumble-match if they have the same Parikh vec-
tor. We also say that a string jumble-matches a Parikh vector ψ if the string’s
Parikh vector is the same as ψ.

Parikh vectors were introduced in [37] and have been used to analyze gram-
mars [31] and characterize commutative languages [27]. Furthermore, jumbled
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pattern matching appears in various applications of computational biology,
such as SNP discovery [10], analysis of similarities among different protein se-
quences [28], and automatic pattern discovery in biosequencing applications [21].
It has also been examined in the streaming model [33].

Jumbled pattern matching on its own can easily be solved by using a sliding
window in linear time for the alphabet {1, . . . , O(n)}, or O(n log |Σ|) time for a
general alphabet Σ. In contrast, the exact pattern matching problem can only
be solved in linear time via more complex techniques (e.g., see [29, 11]). Jumbled
pattern matching has also been studied along with other metrics (e.g., see [14,
15, 1]).

1.1 Jumbled Indexing

Jumbled indexing (JI), currently under very active research, asks whether one
can “index” jumbled matching. The goal is to preprocess a given text S efficiently
so that when given a Parikh vector ψ one can quickly check whether there exists
a substring of S that jumble-matches ψ.

For classical exact matching, text indexing paradigms of linear size and with
near linear query time (in the query size) exist since the introduction of suffix
trees [40]. Many other efficient text indexing structures have been studied since
then, such as suffix array [34]. Other matching problems have also been success-
fully transformed into efficient indexing paradigms. For example, parameterized
matching allows parametric symbols that are required to map to characters in a
consistent manner. Parameterized matching was introduced by Baker [7, 8] for
detection of repetitive similar modules in software and has applications for color
images [3, 5, 39] and approximate image search [25]. Parameterized matching can
be solved in linear time [4]. In [7] a parameterized suffix tree was introduced.
Both the preprocessing and the query times are near-linear (where the latter is
linear in the query size). Another example is order-preserving matchings, where
two numerical strings match if their order is preserved. Efficient order-preserving
matchings were presented in [32] and recently an order-preserving index was in-
troduced [19] that can also be preprocessed in linear time with linear time queries
(in the query size). Indexing with errors [18] has proven to be somewhat harder.

Given that jumbled matching can be trivially solved in linear time, for the
above-mentioned alphabets, one would expect that jumbled indexing would be
a relatively easy problem. However, jumbled indexing is surprisingly difficult.

There are two naive methods to solve jumbled indexing. One is to use the
sliding window technique mentioned above for every query that arrives. This can
be done in O(n) time if the alphabet is a subset of [n], where n is the text size.
Another method is to preprocess all possible answers in advance by computing
the Parikh vectors of every substring in O(n2|Σ|) time. Improving upon this has
proven to be challenging even for constant-sized alphabets.

In an effort to make progress on JI the simplest version of the problem was
considered, that of a binary alphabet. A neat property of a binary alphabet is
that a Parikh vector (i, j) appears in text T iff i is between the minimum and
maximum number of 1s over all substrings of length i+j. This was used in [16] to
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obtain efficient query time by storing the minimum and maximum values of all
possible lengths, yielding an index of O(n) space and O(1) query time. However,
the preprocessing still took O(n2) time.

Burcsi et al. [13] and, independently, Moosa and Rahman [35] succeeded in

improving the preprocessing time by a log factor to O( n2

logn ). They achieved this

by reducing binary JI to (min,+)-convolution which can be solved in O( n2

logn )

time [12]. Later, Moosa and Rahman [36] improved this to O( n2

log2 n
) by using

the four-Russians trick. Recently, Hermelin et al. [26] reduced the problem to
(min,+)-matrix multiplication or all-pairs shortest paths, but a similar reduction
has already appeared in an earlier paper by Bremner et al. [12]; with the latest
breakthrough by Williams [41] on all-pairs shortest paths, the preprocessing time

for binary JI becomes O( n2

2Ω((logn/ log logn)0.5)
). For the binary case there are also

algorithms for run-length encoded strings [6, 24] and for an approximate version
of the problem [17]. The binary case was also extended to trees [22].

Lately, there has been some progress also for non-binary alphabets. Koci-
umaka et al. [30] presented a solution for JI for any constant-sized alphabet

Σ that uses O(n
2 log2 logn

logn ) preprocessing time and space and answers queries in

O(( logn
log logn )2|Σ|−1) time. Amir et al. [2] proposed a solution for constant-sized al-

phabets that preprocesses in O(n1+ε) time and answers queries in Õ(m
1
ε ) time,

where m is the sum of the Parikh vector elements. In an even newer paper,
Durocher et al. [20] considered alphabet size |Σ| = o(( logn

log logn )2) and showed how

to construct an index in O(|Σ|( n
log|Σ| n

)2) time and answer queries in O(nε+ |Σ|)
time, where ε > 0 is an arbitrary small constant. This still leaves us in a sad
state of affairs. In all the (exact) solutions mentioned for |Σ| ≥ 3 the time com-
plexity of preprocessing or the time complexity of querying is always within
polylogarithmic factors of one of the above two naive algorithms. The question
that has troubled the community in these last few years is whether jumbled in-
dexing could be solved with O(n2−ε) preprocessing time and O(n1−δ) for some
constants ε, δ > 0.

In this paper we show that for alphabets of ω(1) size this is impossible under
a 3SUM-hardness assumption. We further show that for any constant alphabet
size r ≥ 3 there exist describable fixed constants εr and δr such that jumbled
indexing requires Ω(n2−εr ) preprocessing time or Ω(n1−δr ) query time under a
stronger 3SUM-hardness assumption.

1.2 3SUM

Numerous algorithmic problems have polynomial time upper bounds that we
suspect are the best obtainable but proving matching lower bounds is difficult
in classical computational models. Recently, a different approach for showing
hardness (e.g. [42]) has been to choose an algorithmic problem that seem harder
than others, e.g. maximum flow, APSP, edit distance, or 3SUM, and to use them
as a hard primitive and reduce them to other problems that we would like to
show are hard.
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In this paper we use the 3SUM problem defined as follows.

– Input: x1, x2, . . . , xn.
– Output: yes, if distinct i, j and k exist such that xi+xj = xk. No, otherwise.

As far back as the mid 90’s there were reductions from 3SUM, especially
within the computational geometry community. Gajentaan and Overmars [23]
were the first to reduce from 3SUM in order to provide evidence for near-
quadratic complexity for computational geometry problems such as minimum-
area triangle, finding 3 collinear points, and determining whether n axis-aligned
rectangles cover a given rectangle. Others followed and quite a few problems are
now known to be 3SUM-hard.

Pătraşcu [38] pointed out that most of the reductions transform the condition
xi + xj = xk into some geometric or algebraic condition by common arithmetic,
but it is difficult to use 3SUM for reductions to purely combinatorial problems,
such as those on graphs or strings. To overcome this he defined Convolution-
3SUM, a more restricted 3SUM version, which is just as hard as 3SUM in the
sense that an O(n2−ε)-time solution for Convolution-3SUM for some ε > 0 would
imply an O(n2−ε

′
)-time solution for 3SUM for some ε′ > 0 [38].

The Convolution-3SUM problem is defined as follows.

– Input: x1, . . . , xn.
– Output: Yes, if there are distinct i and j such that xi + xj = xi+j . No,

otherwise.

By shuffling and changing indices an alternative equivalent output is:

– Output: Yes, if there are distinct i and j such that xi − xj = xi−j . No,
otherwise.

We consider these problems in the RAM model with the elements belonging
to an integer set {−u, . . . , u} as was assumed by others, e.g. [9, 38]. It is possible
to achieve an algorithm of O(u log u) time for the 3SUM problem [9] by Fast
Fourier transform. This can easily be transformed into an O(nu log(nu)) time
algorithm for Convolution-3SUM. Pătraşcu [38] pointed out that the techniques
of Baran et al. [9] yield a (randomized) reduction, for the 3SUM problem, from a
large domain {−u, . . . , u} to the domain of {−n3, . . . , n3}. This reduction can be
adapted for Convolution-3SUM from {−u, . . . , u} to {−n2, . . . , n2}. The reason is
that in 3SUM there are n3 triples to consider when bounding the number of false
positives, but in Convolution-3SUM there are only n2 triples (xi + xj = xi+j)
to consider.

Hence, Convolution-3SUM for input ⊂ {−u, . . . , u} is hard if u ≥ n2 and
is easier than O(n2) for u � n. Convolution-3SUM for inputs ⊂ {−n, . . . , n}
seems (though has not proven) to be as hard as the general case. This leads us
to state two hardness assumptions. For both we assume, as in [9, 38], the Word
RAM model with words of O(log n) bits.
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– 3SUM-hardness assumption: Any algorithm for Convolution-3SUM re-
quires n2−o(1) time in expectation to determine whether a set {x1, . . . , xn} ⊂
{−n2, . . . , n2} contains a pair xi, xj such that xi − xj = xi−j .

– Strong 3SUM-hardness assumption: Any algorithm for Convolution-
3SUM requires n2−o(1) time in expectation to determine whether a set
{x1, . . . , xn} ⊂ {−n, . . . , n} contains a pair xi, xj such that xi − xj = xi−j .

1.3 Preliminaries and Definitions

Let S be a string of length n over an alphabet Σ = {σ1, σ2, . . . , σ|Σ|}. An integer
i is a location or a position in S if i ∈ {1, . . . , |S|}. The substring S[i . . j] of S, for
any two positions i ≤ j, is the substring of S that begins at index i and ends at
index j. The string generated by a character a repeated r times is shorthanded
with ar.

The Parikh vector of a string S is ψ(S) = (c1(S), c2(S), . . . , c|Σ|(S)), where
ci(S) is the count of occurrences of the i-th character of Σ. Two strings (of equal
length) S and S′ are said to jumble-match if they have the same Parikh vector.
For a text T and pattern P we say that P jumble-matches at location i if the
substring T [i . . i+ |P |−1] jumble-matches P . Jumbled pattern matching refers to
the problem where one is given a pattern and text and seeks all locations where
the pattern jumble-matches. For a Parikh vector ψ = (c1, . . . , c|Σ|), we denote

its length with |ψ| which is Σ
|Σ|
i=1ci.

Jumbled indexing (JI, for short), also known as histogram indexing, Parikh
indexing, or permutation indexing, is defined as follows.

– Preprocess: a text S over alphabet Σ.
– Query: Given a vector ψ ∈ N|Σ|, decide whether there is a substring S′ such

that the Parikh vector ψ(S′) is equal to ψ.

2 Hardness of Jumbled Indexing

2.1 Outline

We will show that, under the 3SUM-hardness assumption, one cannot improve
the running time over the naive methods mentioned in the introduction by any
polynomial factors for alphabets of super-constant size; and for alphabets of
constant size there are polynomial time lower bounds, dependent on the alphabet
size.

To achieve these results we reduce from 3SUM to JI. Naturally, we use
Convolution-3SUM, which is more appropriate for problems with structure. A
very high-level description of our reduction is as follows. A Convolution-3SUM
input is transformed to JI by hashing the input values to much smaller sized val-
ues by using mod over a collection of primes. These are then novelly transformed
to a string. The queries on the string simulate testing matchings mod primes
in parallel. Using mod primes causes several problems, which lead to interesting
ideas to overcome these obstacles.
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2.2 Setup

Let x1, x2, . . . , xn be the input of the Convolution-3SUM problem such that
each xi ∈ {−n2, . . . , n2}. Under the strong 3SUM-hardness assumption, each
xi ∈ {−n, . . . , n}.

We choose a collection of roughly equal-sized primes p1, . . . , pk (for some
choice of k) with their product p1 · · · pk > n2 (or, under the strong 3SUM-
hardness assumption, with p1 · · · pk > n). It is possible to choose p1, . . . , pk ∈
Θ(n2/k) (or, for the strong assumption, p1, . . . , pk ∈ Θ(n1/k)) to satisfy this
requirement for any given k ≤ logn

log logn , because of the density of the primes.
The alphabet of JI in the reduction will consist of a character for each prime

we choose, plus two more special characters we introduce later. Therefore, the
JI alphabet size will be |Σ| = k + 2.

The lemma below follows directly from properties of mod and will be instru-
mental in obtaining our result.

Lemma 1. Let p1, . . . , pk be a set of primes such that p1 · · · pk > u (with u = n2

or u = n depending on the hardness assumption). Let i > j. Then xi − xj =
xi−j ⇐⇒ ∀r : (xi − xj) mod pr = xi−j mod pr

⇐⇒ ∀r : (xi mod pr)− (xj mod pr) ∈

{
(xi−j mod pr)

(xi−j mod pr)− pr

2.3 Reduction

In the reduction to the JI instance we will generate an input string S to be
preprocessed and a set of n queries Q1, . . . , Qn which we now describe.

JI Input String We generate an input string S based on the Convolution-
3SUM input x1, . . . , xn. For every prime pj we create a character aj and for
each xi we create a substring

Si = a
EXP(i,1)
1 a

EXP(i,2)
2 · · · aEXP(i,k)

k ,

where
EXP(i, j) = (xi+1 mod pj)− (xi mod pj).

We note that, for the sake of simplicity, we are cheating since the exponent
of a character in a string cannot be negative. We will shortly explain how to fix
this.

Finally, we define

S = $# S1 #$# S2 #$# · · · #$# Sn−1 #$,

where # and $ are separator characters.

The structure of S is such that substrings beginning and ending within sepa-
rators #$# have the property that the number of occurrences of each character
is reminiscent of the requirements of Lemma 1.
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Lemma 2. Consider the substring of S, R(j,i) = $# Sj #$# . . . #$# Si−1 #$.
Each character a` has exactly (xi mod p`) − (xj mod p`) occurrences in R(j,i).

Proof. The character a` has EXP(j, `) occurrences in Sj , EXP(j + 1, `)
occurrences in Sj+1, . . ., EXP(i − 1, `) occurrences in Si−1. Hence, we
have Σi−1

d=jEXP(d, `) occurrences of a` in R(j,i). Then Σi−1
d=jEXP(d, `) =

Σi−1
d=j(xd+1 mod p`)−(xd mod p`), which telescopes to (xi mod p`) − (xj mod p`).

ut

By combining Lemmas 1 and 2 we can deduce the following.

Corollary 1. There is a solution xi − xj = xi−j to the Convolution-3SUM iff
the number of occurrences of each character a` in R(j,i) is in

{(xi−j mod p`), (xi−j mod p`)− p`}.

To fix the problem of the negative exponent we set D = maxki=1 pi and
change EXP(i, j) = (xi+1 mod pj) − (xi mod pj) + D. Now, the exponent is
not negative, but is still of order Θ(n2/k) (or Θ(n1/k) under the strong 3SUM-
hardness assumption), which is the size of each prime. We leave it as an easy
exercise to verify that Lemma 2 can be modified so that each character a` has
exactly (xi mod p`) − (xj mod p`) + D(i − j) occurrences in R(j,i) and, in
turn, that Corollary 1 can be modified so that a` ∈ {(xi−j mod p`) + D(i −
j), (xi−j mod p`)− p` +D(i− j)}.

JI Queries We generate n queries ψ1, . . . , ψn for the jumbled indexing instance
such that each ψL represents xL, an element of the Convolution-3SUM input.
The query ψL will imitate a query on the Convolution-3SUM data asking whether
there exist i and j such that

(a) xL = xi − xj and
(b) L = i− j.

We will also embed the query with data requiring that

(c) any substring that jumble-matches the query ψ must be of the form R(j,i)

from Lemma 2.

Obviously, answers to all queries ψL will be sufficient to derive a solution to
Convolution-3SUM.

To enforce (c) and (b) we use the separators of S, #, and $. For (c) we
require the form of R(j,i) and for (b) we require L = i − j, which means that
each potential substring R(j,i) should contain exactly L parts Sh.

Observation 1 Any substring of S that jumble-matches the query ψ, where ψ
has L+1 for $ and 2L for #, must be of the form R(j,i) (of Lemma 2) and must
satisfy L = i− j.
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Proof. Let R be a substring of S such that R jumble-matches ψ. Then each set
of separators #$# fully contained in R contributes twice as many #’s than $’s.
Since our query asks for L+ 1 $’s but only 2L #’s, it must be that R begins and
ends with a $ and hence is of the form R(j,i). Moreover, since there are L + 1
$’s and R begins and ends with a $, there must be exactly L parts Sh in R,
implying that L = i− j. ut

It remains to show how to adapt the query in order to enforce (a) xL = xi−xj .
Here we will use Corollary 1. It is sufficient to find the substrings R(j,i) such the
number of occurrences of each character a` is either ((xi − xj) mod p`) + DL
or ((xi − xj) mod p`) − p` + DL. However, checking two options (for each a`)
cannot be done with one JI query. So, we split the query ψL into 2k queries

ψ
(1)
L , . . . , ψ

(2k)
L for the 2k different equalities that satisfy Corollary 1.

Hence, we have overall 2kn JI queries. These queries provide a full answer to
the Convolution-3SUM problem.

Theorem 2. Consider the jumbled indexing problem with text size s and alpha-
bet size r ≥ 5. Then under the 3SUM-hardness assumption, one of the following
holds for any fixed ε > 0:

1. the preprocessing time is Ω(s2−
4
r−ε), or

2. the query time is Ω(s1−
2
r−ε).

Proof. Without loss of generality, assume that r ≤ log s
log log s (otherwise, s

1
r = Θ̃(1)

and we may as well make r equal to log s
log log s ).

Let x1, . . . , xn ∈ {−n2, . . . , n2} be the input of the Convolution-3SUM prob-
lem. We apply the above reduction and generate the string S as described.
Denote its length by s. Recall that the alphabet size is r = |Σ| = k+ 2, where k
is the number of primes (the 2 is for the separators $ and #). Since each prime
pi ∈ Θ(n2/k), we have s = O(kn2/kn) = Õ(n

r
r−2 ) for k + 2 = r ∈ o(log n). In

other words, n = Ω̃(s1−
2
r ).

Applying the preprocessing and subsequently answering all 2kn defined
queries yields a solution to the Convolution-3SUM problem. Letting P (s) and
Q(s) be the preprocessing and query time, we then have P (s) + 2knQ(s) ≥
Ω(n2−ε).

For k + 2 = r ∈ o(log n) we note that 2k ∈ o(nε). We must thus have

P (s) ≥ Ω(n2−ε) = Ω(s2(1−
2
r )−O(ε)) or Q(s) ≥ Ω(n1−O(ε)) = Ω(s1−

2
r−O(ε)). ut

Note that for r ≤ 4, the bound in the above theorem becomes vacuous. We
can get somewhat better bounds under the strong 3SUM-hardness assumption.

Theorem 3. Consider the jumbled indexing problem with text size s and alpha-
bet size r ≥ 4. Then under the strong 3SUM-hardness assumption, one of the
following holds for any fixed ε > 0:

1. the preprocessing time is Ω(s2−
2
r−1−ε), or
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2. the query time is Ω(s1−
1
r−1−ε).

The proof is the same as in the previous theorem, but with pi ∈ Θ(n1/k).
By the same proof and further calculations, we can also get a

slightly strengthened lower bound of Ω(s2/2O(
√
log s)) preprocessing time or

Ω(s/2O(
√
log s)) query time for alphabet size r = Θ(

√
log s), under the assump-

tion that 3SUM has an Ω(n2/2O(
√
logn)) lower bound.

2.4 Hardness of JI with Alphabet Size 3

The reduction we have presented contains two separators in the string S. Re-
call that for every prime we also construct a character. We require that the
multiplication of the primes be > n for strong 3SUM-hardness and > n2 for
3SUM-hardness. However, if a prime is of order Ω(n) then the size of the string
S would be Ω(n2), too large to gain anything from the reduction. Hence, we
need at least two primes for strong 3SUM-Hardness and three primes for 3SUM-
hardness. In this section we generate a string which requires only one separator,
and for 2 primes p and q of size Θ(

√
n) this yields a nontrivial result under the

strong 3SUM-hardness assumption.
While we construct a different string for JI and need to argue a claim similar

to Lemma 2 and Observation 1, the structure of the proof remains the same.
Let a be a character representing prime p, and b be a character that represents

prime q, and # be a separator character. Let D = max{p, q}. Define

Si = (a#)(xi+1 mod p)−(xi mod p)+D(b#)(xi+1 mod q)−(xi mod q)+D and
S = #Da2D#D S1 #Da2D#D S2 #Da2D#D · · · #Da2D#D Sn−1 #Da2D#D,

where #Da2D#D is the separator (a has a double role).

Define R(j,i) = #D Sj #Da2D#D · · · #Da2D#D Si−1 #D.

It is easy to verify, similar to Lemma 2, that a has exactly (xi mod p) −
(xj mod p) + D(i − j) + 2D(i − j − 1) occurrences in R(j,i) and b has exactly
(xi mod q) − (xj mod q) +D(i− j) occurrences in R(j,i). Hence, as in Corol-
lary 1, there is a solution xi − xj = xi−j to Convolution-3SUM iff the number
of occurrences of a in R(j,i) is in {((xi − xj) mod p) + D(3i − 3j − 2), ((xi −
xj) mod p)− p+D(3i− 3j − 2)} and the number of occurrences of b in R(j,i) is
in {((xi − xj) mod p) +D(i− j), ((xi − xj) mod p)− p+D(i− j)}.

The tricky part is to obtain an alternative to Observation 1. The difficulty
stems from the fact that a and # appear both in the separator part and in
the Si’s.

Observation 4 Say we have a Parikh vector ψ = (n1, n2, n1 + n2 + 4D) for
(a, b,#), with L = (n1 div 3D) + 1. Then any substring of S which jumble-
matches ψ is of the form R(j,i). Moreover i− j = L.

Proof. Define ∆ = 4D the difference between the number of #’s and the number
of a’s and b’s (put together). Let x be a substring of S which jumble-matches ψ.
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Any Sl or separator #Da2D#D fully contained in x has a balanced number of
#’s and non-#’s and, hence, does not affect ∆. So, at either end there is a part of
a separator or an Sl which both together contributes to ∆. It is straightforward
to confirm that the only way this is possible is having x begin with #D, the
prefix of a separator, and end with #D, the suffix of a separator. Hence, x has
the required form R(j,i).

We show that i−j = L = (n1 div 3D)+1. We have claimed that the number
of a’s in R(j,i) is (xi mod p) − (xj mod p) +D(3i− 3j − 2). Hence, since R(j,i)

jumble-matches ψ, we have n1 = (xi mod p) − (xj mod p) +D+ 3D(i− j− 1).
Since each (xi mod p) − (xj mod p) + D ∈ [0, 2D) it follows that (n1 div
3D) = i− j − 1. ut

Finally, for a given L all of our queries have n1 = (xL mod p) + D(3L − 2)
or n1 = (xL mod p)− p+D(3L− 2) in location a of the Parikh vector. In both
cases, L = (n1 div 3D) + 1, satisfying the requirement of Observation 4. Hence,

Theorem 5. Consider the jumbled indexing problem with text size s and alpha-
bet size 3. Under the strong 3SUM-hardness assumption, one of the following
holds for any fixed ε > 0:

1. the preprocessing time is Ω(s
4
3−ε), or

2. the query time is Ω(s
2
3−ε).

Proof. Note that p, q ∈ Θ(
√
n). Hence, S is of length s = O(n

3
2 ). Following the

same arguments as in Theorem 2 yields the result. ut

Epilogue. In a forthcoming work, the second and third author will present new
improved algorithms for the jumbled indexing problem for any constant alphabet

size r ≥ 2 that achieves truly sublinear query time and O(n2−
2

r+O(1) ) prepro-
cessing time, thus nearly matching the lower bound in Theorem 3.
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