
Applications of Chebyshev Polynomials to Low-Dimensional

Computational Geometry

Timothy M. Chan∗

August 2, 2018

Abstract

We apply the polynomial method—specifically, Chebyshev polynomials—to obtain a number
of new results on geometric approximation algorithms in low constant dimensions. For example,
we give an algorithm for constructing ε-kernels (coresets for approximate width and approximate
convex hull) for any d-dimensional n-point set in near-optimal time, close to O(n+(1/ε)(d−1)/2),
ignoring a small (1/ε)3/2+o(1) factor. We obtain an improved data structure for Euclidean
approximate nearest neighbor search with close to O(n log n + (1/ε)d/4n) preprocessing time
and O((1/ε)d/4 log n) query time. We obtain improved approximation algorithms for discrete
Voronoi diagrams, diameter, and bichromatic closest pair in the Ls-metric for any even integer
constant s ≥ 2. The techniques are general and may have further applications.

1 Introduction

This paper presents new results on a number of fundamental problems in low-dimensional geometric
approximation algorithms. Let P be a set of n points in d-dimensional Euclidean space where d is
a constant. Let ε > 0 be a user-specified parameter (not necessarily a constant). As a shorthand,
let E := d1/εe. Below, the O notation may hide factor that depends on d but not ε. The notation
O∗ will be used to suppress small factors of the form Ec for some constant c independent of d.

Diameter. We present a new algorithm to compute a (1 + ε)-approximation of the diameter of
P (the farthest pair distance) in O∗(n+ Ed/2) time.

There have been a long series of prior results:

O∗(Ed/2n) time by Agarwal, Matoušek, and Suri [3];
O∗(n+ E2d) by Barequet and Har-Peled [15];

O∗(n+ E3d/2) by combining the two algorithms [20];
O∗(n+ Ed) by Chan [20];

O∗(n+ Ed/2
√
n) by Arya and Chan [6].

Our new result is a substantial improvement, and provides a near Ed/4-factor speedup in the case
when n is near Ed/2, for example.

∗Department of Computer Science, University of Illinois at Urbana-Champaign (tmc@illinois.edu). Much of this
work was done while the author was at the Cheriton School of Computer Science, University of Waterloo. A prelim-
inary version of this work appeared in Proc. 33rd Sympos. Comput. Geom., pages 26:1–26:15, 2017.

1

ε-Kernels. We obtain an algorithm to compute an ε-kernel of P with worst-case optimal size
O(E(d−1)/2) in O∗(n+Ed/2) expected time; ε-kernels [1] provide coresets for a variety of problems
such as diameter, width, minimum enclosing cylinder, minimum bounding box, and convex hull.

This is again a substantial improvement in terms of ε-dependencies over prior results:

O∗(n+ E3d/2) time by Agarwal, Har-Peled, and Varadarajan [1];
O∗(n+ Ed) by Chan [20];

O∗(n+ Ed/2
√
n) by Arya and Chan [6].

More importantly, since the size of the ε-kernel may be Ω(E(d−1)/2), our result for this problem is
near worst-case optimal, up to an O∗(1) factor (more precisely, an O(E3/2 logO(1)E) factor).

Bichromatic closest pair. Assuming each input point is colored red or blue, we present a new
algorithm to compute a (1 + ε)-approximation of the bichromatic closest pair of P in O∗(Ed/4n)
expected time.

This improves a series of prior results:

O∗(Edn log n) time by Arya et al. [14];

O∗(Ed/2n log n) by Chan [19];

O∗(Ed/3n) by Arya and Chan [6].

Approximate nearest neighbors. More generally, we can preprocess P in O(n log n) +
O∗(Ed/4n) expected time so that (1 + ε)-factor approximate nearest neighbor queries can be an-
swered in O∗(Ed/4 log n) query time.

This improves prior results with:

O(n log n) preprocessing time & O∗(Ed log n) query time by Arya et al. [14];

O∗(Ed/2n log n) O∗(Ed/2 log n) by Chan [19];

O(n log n) +O∗(Ed/3n) O∗(Ed/3 log n) by Arya and Chan [6].

There were more previous results by Arya et al. [10, 12, 13] giving space/query-time tradeoffs:
for any given γ ∈ [0, d/2], their best data structure with O∗(Eγn log n) space has O∗(Ed/2−γ log n)
query time. However, their preprocessing time has large ε-dependencies. We can achieve the same
tradeoff with O∗(Eγn log n) preprocessing time.

Streaming diameter. In the insertion-only streaming model, we can maintain a (1 + ε)-
approximation of the diameter with O(E(d−1)/2) space and O∗(Ed/4) time per insertion of point.

This improves prior results with:

O(E(d−1)/2) space & O∗(Ed/2) time (folklore);

O(E(d−1)/2) O∗(Ed/3) by Arya and Chan [6].

Streaming ε-kernels. In the insertion-only streaming model, we can maintain an ε-kernel of
O(E(d−1)/2) size with O(E(d−1)/2) space and O∗(1) time per insertion of point.

This improves prior results with:

2

O(E(d−1)/2) space & O∗(Ed logd n) time by Agarwal, Har-Peled, and Varadarajan [1];
O∗(Ed) O(1) by Chan [21];

O(E(d−1)/2) O∗(Ed/2) by Zarrabi-Zadeh [32];

O(E(d−1)/2) O∗(Ed/4) by Arya and Chan [6].

Since our result has O∗(1) time, it is near optimal (up to an O(E3/2 logO(1)E) factor).

Discrete upper envelopes and discrete Voronoi diagrams. Most of the above results are
obtained by solving the following key subproblem of independent interest, called discrete upper
envelope (introduced in [21]): the problem is to find extreme points along various uniformly spaced
directions, or more precisely, find the point pξ ∈ P that maximizes pξ · ξ for each ξ ∈ Ξ × {1},
where Ξ is the set of all points in a uniform grid of side length δ over [0, 1]d−1. To explain the
name, note that after dualization the problem corresponds to evaluating the upper envelope of a
set of hyperplanes (i.e., pointwise maximum of (d− 1)-variate linear functions) at the vertical lines
through all grid points in Ξ.

In the related (d− 1)-dimensional discrete Voronoi diagram problem [21] (also called the “Eu-
clidean distance transform” [18, 28]), we want to find the nearest neighbor p′ξ in P to each grid
point ξ ∈ Ξ× {0}.

In both problems, we allow approximation with an additive error of O(ε), given that P ⊂ [0, 1]d.
We present an algorithm with O∗(n+ Ed/2 + F d) time where F := d1/δe. Since the output size is
Θ∗(F d), our algorithm is near-optimal up to O∗(1) factors if F ≥

√
E (indeed, in applications, the

main case of interest is when F =
√
E). This improves prior results (assuming F ≤ E) with:

O∗(F dn) time (trivial);
O∗(n+ Ed) by Chan [21];

O∗(mindk=0 F
d−k(n+ Ek)) by Arya and Chan [6].

The last bound is O∗(n+Ed/2
√
n) in the case F =

√
E. Interestingly, these prior algorithms actually

solve the discrete upper envelope problem exactly after an initial rounding of P to a uniform grid
of side length ε (in other words, error solely comes from rounding). Our new approach will make
more powerful use of approximation.

Significance. For specific small constants d, our improvements may not be dramatic when factors
hidden in the O∗ notation are taken into account. On the other hand, for large constants d, the time
bound may become impractically large as E grows (not to mention that hidden constant factors,
of the form dO(d), may become an issue). For example, for diameter with d = 15 and n = E7,
the old bound [21] was O(E13 logE), the most recent previous bound [6] was O(E9.5 logE), and
the new bound is O(E8 logO(1)E). For bichromatic closest pair with d = 25, the old bound [19]
was O(E12n log n), the most recent previous bound [6] was O(E7.5n logE), and the new bound is
O(E5.75n logO(1)E). Also, for a problem such as diameter, there are existing alternatives that do not
necessarily have good worst-case running time but performs much better on “realistic input” [25].

However, we believe that more significant than the results are the techniques. All the previous
nonstreaming algorithms mentioned above use “purely” geometric techniques (for example, no fast
matrix multiplication or fast Fourier transform). Surprisingly, we bring in algebraic techniques—
namely, the polynomial method—to tackle these traditional computational geometry problems.
Specifically, our algorithms use Chebyshev polynomials.

3

The polynomial method and Chebyshev polynomials have found applications before in theo-
retical computer science, numerical analysis, and other areas. Two recent lines of research are
particularly relevant:

• Andoni and Nguyen [5] applied the polynomial method to obtain dynamic streaming algo-
rithms for the width problem. This was followed up by Chan [22] for the ε-kernel problem.
Chebyshev polynomials were not used. In regards to traditional (or insertion-only streaming)
algorithms, these ideas seem to give poorer results than what is already known.

• Valiant [29] applied Chebyshev polynomials to obtain faster algorithms for approximate
bichromatic closest pair and offline approximate nearest neighbor search in high dimensions.
This was later improved by Alman, Chan, and Williams [4]. These ideas do not seem directly
useful for low-dimensional nearest neighbor search, as the target time bounds are vastly dif-
ferent in low vs. high dimensions.

Interestingly, our work will combine ideas from these two research threads, along with existing
geometric techniques on low-dimensional ε-kernels and approximate nearest neighbor search. The
connection may be simple in hindsight (none of our ideas are original in isolation), but honestly
the author did not anticipate that these threads could come together so neatly!

Although we draw on algebraic techniques, our algorithms for discrete upper envelopes and
diameter are easy to understand and do not require advanced background. Our first algorithm does
not even need fast Fourier transform or fast matrix multiplication, just simple arithmetic on roughly√
E-bit-long numbers (our time bounds already account for the bit complexity of such operations).

Section 2 giving a self-contained description of the first algorithm is about two pages long. Our
second algorithm for diameter, which uses fast Fourier transform, as described in Section 5, is even
shorter.

The applications of our discrete upper envelope algorithm to the other problems are described
in Section 4 and all follow directly from existing geometric techniques.

Note. After completing a preliminary draft of this paper, the author has learned that Arya,
da Fonseca, and Mount (personal communication, late Nov. 2016) have independently obtained
similar results [9]. In fact, their time bounds are a little better in the hidden O∗(1) factors
(for example, for diameter, we obtain O((n

√
E + E(d+1)/2) logO(1)E) time, whereas they obtain

O(n logE+E(d−1)/2+δ) time for an arbitrarily small constant δ > 0). The fact that the techniques
are completely different makes the independent discovery all the more exciting. Arya et al.’s tech-
niques build on a long series of their earlier work involving Macbeath regions [12, 7, 8, 10], and the
analysis in these previous papers appears complicated. In contrast, our algorithms make minimal
use of geometry, and are more general in some sense. For instance, our second algorithm for di-
ameter works in the Ls metric for any integer constant s ≥ 2 (or other similarly behaved distance
functions) with the same running time, whereas the approach by Arya et al. does not appear to
generalize because of its reliance on a certain lifting transformation. The polynomial method is
very powerful, and we anticipate more applications will follow.

2 First Algorithm

Our first algorithm solves a generalization of the discrete upper envelope problem:

4

Problem 2.1. (Generalized Discrete Upper Envelope) Let d be a constant and let ψ1, . . . , ψd−1
be bivariate O(1)-degree polynomials with integer coefficients. Given a set P of n points in Zd, we
want to compute

f(x1, . . . , xd−1) := max
(a1,...,ad)∈P

(ψ1(a1, x1) + · · ·+ ψd−1(ad−1, xd−1) + ad) (1)

for all1 (x1, . . . , xd−1) ∈ [F]d−1, while allowing additive error O(εU), where U is a given upper bound
on |ψ1(a1, x1) + · · ·+ ψd−1(ad−1, xd−1) + ad| over all (a1, . . . , ad) ∈ P and (x1, . . . , xd−1) ∈ [F]d−1.

For example, for the discrete upper envelope problem as defined in the Introduction, we can
round the given point set P ⊂ [0, 1]d to a uniform grid of side length ε and then rescale so that
Ξ = [F]d−1 and P ⊂ [E]d−1× [EF]. We then get an instance of Problem 2.1 with ψi(ai, xi) = aixi.
Here, U = O(EF), and n ≤ (EF)O(1) after removing duplicates.

For the (d − 1)-dimensional discrete Voronoi diagram problem as defined in the Introduction,
approximating the distance with additive error O(ε) is equivalent to approximating the squared
distance with additive error O(ε). We can round and rescale so that Ξ = [F]d−1 and P ⊂ [E]d. We
then get an instance of Problem 2.1 with ψi(ai, xi) = (EF xi−ai)

2 (assuming that F divides E). Here,

U = O(E2), and n ≤ EO(1) after removing duplicates. We can also take ψi(ai, xi) = (EF xi − ai)
s

for the analogous problem under the Ls metric for any even integer constant s.
We now solve Problem 2.1 using the polynomial method. We start with basic properties about

Chebyshev polynomials (e.g., see [4, 29] for quick proofs):

Lemma 2.2. Let

Tq(x) :=

bq/2c∑
i=0

(
q

2i

)
(x2 − 1)ixq−2i

be the degree-q Chebyshev polynomial (of the first kind). The following three properties hold:

(i) If |x| ≤ 1, then |Tq(x)| ≤ 1.

(ii) If x > 1, then Tq(x) > 1.

(iii) If x ≥ 1 + ε, then Tq(x) > 1
2e
q
√
ε.

Set q :=
⌈√

E ln(4n)
⌉

and D := U q. Let T (x) := D · Tq(1 + x
U), which is a polynomial with

integer coefficients. Our main idea is to work with the following function instead of f :

f̃(x1, . . . , xd−1, t) :=
∑

(a1,...,ad)∈P

T (ψ1(a1, x1) + · · ·+ ψd−1(ad−1, xd−1) + ad − t) (2)

where x1, . . . , xd−1 ∈ [F] and |t| ∈ [U]. The function f̃ is “nicer” since it is a sum (instead of a max)
of polynomials, and is thus itself a polynomial. The following observations explain the relationship
between the two functions:

1[m] denotes the integer set {0, 1, . . . ,m− 1}.

5

• Case 1: f(x1, . . . , xd−1) ≤ t. Then −2U ≤ ψ1(a1, x1) + · · · + ψd−1(ad−1, xd−1) + ad − t ≤ 0
for all (a1, . . . , ad) ∈ P . By Lemma 2.2(i), all n terms in the sum (2) are at most D, and so
f̃(x1, . . . , xd−1, t) ≤ Dn.

• Case 2: f(x1, . . . , xd−1) ≥ t + εU . Then ψ1(a1, x1) + · · · + ψd−1(ad−1, xd−1) + ad − t ≥ εU
for at least one (a1, . . . , ad) ∈ P . By Lemma 2.2(iii), at least one term in the sum (2) exceeds
D · 12e

q
√
ε. By Lemma 2.2(i,ii), all other terms are at least −D. So, f̃(x1, . . . , xd−1, t) ≥

D(12e
q
√
ε − (n− 1)) > Dn by our choice of q.

Thus, we can approximately compare f(x1, . . . , xd−1) against t with additive error εU , by
evaluating f̃(x1, . . . , xd−1, t). So, we can approximately compute f(x1, . . . , xd−1) with additive
error O(εU) by binary search, using O(logE) evaluations of f̃ . The total number of evaluations
over all (x1, . . . , xd−1) ∈ [F]d−1 is O(F d−1 logE).

To evaluate f̃ , one could expand the expression into monomials, as f̃ is a low-degree multivariate
polynomial, but this approach seems too costly. Instead, we use the Chinese remainder theorem.

In the stated domain, f̃ is upper-bounded by M := DnTq(3) ≤ Dn2O(q) ≤ 2O(
√
E logO(1)(nEU)).

Let P be a set of primes whose product exceeds M ; by known bounds, we can choose such a
set so that |P| = O(logM/ log logM) and each prime in P is at most O(logM). We describe
how to evaluate f̃(x1, . . . , xd−1, t) mod p for each p ∈ P. Afterwards, we can reconstruct each
value f̃(x1, . . . , xd−1, t) by the Chinese remainder theorem, which takes at most O(log2M) time by
elementary methods (for example, by repeated application of Euclid’s algorithm, although faster,
more sophisticated methods are possible). The total time of this step is O(F d−1 logE log2M) =
O(F d−1E logO(1)(nEU)).

Fix a prime p ∈ P. For each a1, . . . , ad ∈ [p], let wa1,...,ad be the number of points (a′1, . . . , a
′
d) ∈

P such that a′1 ≡ a1, . . . , a
′
d ≡ ad (mod p); we can precompute all these counts by a linear scan

over P , using O(n) arithmetic operations. Now,

f̃(x1, . . . , xd−1, t) ≡
∑

a1,...,ad∈[p]

wa1,...,adT (ψ1(a1, x1) + · · ·+ ψd−1(ad−1, xd−1) + ad − t) (mod p).

To generate all f̃ mod p values, we use dynamic programming. For each i ∈ {1, . . . , d} and each
a1, . . . , ai−1, xi, . . . , xd−1, t ∈ [p], define

g(i)a1,...,ai−1
(xi, . . . , xd−1, t) :=

∑
ai,...,ad∈[p]

wa1,...,adT (ψi(ai, xi) + · · ·+ ψd−1(ad−1, xd−1) + ad−t)

(mod p).

Then g(1) gives us f̃ mod p.
For the base case, we can compute g(d) using the formula

g(d)a1,...,ad−1
(t) ≡

∑
ad∈[p]

wa1,...,adT (ad − t) (mod p) (3)

for all a1, . . . , ad−1, t ∈ [p]. For i = d− 1, . . . , 1, we can compute g(i) using the recursive formula

g(i)a1,...,ai−1
(xi, . . . , xd−1, t) ≡

∑
ai∈[p]

g(i+1)
a1,...,ai(xi+1, . . . , xd−1, t− ψi(ai, xi)) (mod p) (4)

6

for all a1, . . . , ai−1, xi, . . . , xd−1, t ∈ [p].
The resulting dynamic program requires O(pd) table entries, each computed using O(p) arith-

metic operations by (3) and (4). This assumes that we have precomputed T (x) for all x ∈ [p]
(which straightforwardly requires O(pq) arithmetic operations). All arithmetic operations are done
modulo p, each costing at most O(log2 p) by elementary methods. Thus, the running time of the
dynamic program is O(pd+1 log2 p) = O(logd+1M log2 logM) = O(E(d+1)/2 logO(1)(nEU)).

Including the cost of computing the counts, the running time is O((n+E(d+1)/2) logO(1)(nEU))
for each fixed prime p. The total over all O(logM/ log logM) = O(

√
E logO(1)(nEU)) primes p ∈ P

becomes O((n
√
E + Ed/2+1) logO(1)(nEU)).

Theorem 2.3. Problem 2.1 can be solved in O((n
√
E + Ed/2+1 + F d−1E) logO(1)(nEU)) time,

where E = d1/εe.

In the case F =
√
E, the bound is O((n

√
E+Ed/2+1) logO(1)(nEU)), which nearly matches the

lower bound Ω(n+ E(d−1)/2) up to a factor of about E3/2.
Note that the above method actually solves a data structure version of Problem 2.1: after

preprocessing in O((n
√
E + Ed/2+1) logO(1)(nEU)) time, we can approximate f(x1, . . . , xd−1) for

any query point (x1, . . . , xd−1) ∈ [F]d−1 in O(E logO(1)(nEU)) time. This data structure problem
is similar to the approximate polytope membership problem studied by Arya et al. [7, 8, 9, 10, 12].

3 Variants

3.1 Finding Witnesses

One technical issue not addressed in Section 2 is how to find a witness point (a1, . . . , ad) ∈ P that
approximately attains the maximum in (1), for every (x1, . . . , xd−1) ∈ [F]d−1. This is needed in
some of the applications from Section 4. One standard approach to find such witnesses is via binary
search, using a binary tree of subsets of P , but this seems to hurt the Ed/2 term in the running
time. We adopt another standard approach, using random sampling to isolate witnesses [27]. In the
approximate setting, the details are trickier, but have been worked out in the previous paper [22].
Although that paper dealt with q-th powers instead of degree-q Chebyshev polynomials, the same
ideas can be applied, as we now explain. (In fact, the details get a little simpler when we are not
working in the streaming model.)

We assume that P ⊂ [U]d (which is true in all our applications). First let `(a1, . . . , ad) =
a1U

d−1 + a2U
d−2 + · · ·+ ad + 1 denote the label of a point (a1, . . . , ad) ∈ P .

Let k := dlog ne. For each j ∈ [k], draw a random sample Rj ⊂ P where each point is chosen
with probability 1/2j .

Reset q :=
⌈√

kE ln(10nU2d)
⌉
. Define the polynomial functions

f̃j(x1, . . . , xd−1, t) :=
∑

(a1,...,ad)∈Rj

T (ψ1(a1, x1) + · · ·+ ψd−1(ad−1, xd−1) + ad − t)

f∗j (x1, . . . , xd−1, t) :=
∑

(a1,...,ad)∈Rj

`(a1, . . . , ad)T (ψ1(a1, x1) + · · ·+ ψd−1(ad−1, xd−1) + ad−t)

where x1, . . . , xd−1 ∈ [F] and |t| ∈ [U]. We can evaluate f̃j and f∗j by the same approach as

in Section 2 (after resetting M := Ud · DnTq(3)). The running time remains the same up to

7

polylogarithmic factors, since the number of choices for j is k = O(log n), and the degree q increases
only by a polylogarithmic factor.

Suppose we want to find a witness for a given (x1, . . . , xd−1) ∈ [F]d−1. We first find an ap-
proximation t to the maximum, with t ≤ f(x1, . . . , xd−1) ≤ t+ dεUe, by the method in Section 2.
Intuitively, if the number of witnesses is near 2j , then with good probability exactly one witness

is in Rj and the ratio
f∗j (x1,...,xd−1,t)

f̃j(x1,...,xd−1,t)
rounded to the nearest integer should give us the label to a

witness, because the sums in the numerator and denominator are both dominated by a single term
which corresponds to the witness. More care is needed in the approximate setting, however.

Let ∆ := ddεUe /ke. More precisely, we claim that with probability Ω(1), the label of a witness
can be found among the following ratios after rounding:

f∗j (x1, . . . , xd−1, t− i∆)

f̃j(x1, . . . , xd−1, t− i∆)
(i, j ∈ [k]).

To prove the claim, let Pi = {(a1, . . . , ad) ∈ P : ψ1(a1, x1)+· · ·+ψd−1(ad−1, xd−1)+ad ≥ t−i∆}.
Any point in Pi for any i ≤ k may be used as a witness with additive error O(k∆) = O(εU).
Since |P0| ≥ 1, there exists i ≤ k such that |Pi| ≤ 2|Pi−1| (for otherwise, |Pk| > 2k ≥ n, a
contradiction). Suppose 2j ≤ |Pi−1| ≤ 2j+1. Then |Pi| ≤ 2j+2. Let E be the event that exactly
one point of Pi−1 is chosen to be in Rj and no point of Pi \ Pi−1 is chosen to be in Rj . Then

Pr(E) ≥ |Pi−1| 12j (1− 1
2j

)|Pi|−1 ≥ (1− 1
2j

)2
j+2 ≥ Ω(1). Suppose that E is true. Let (a1, . . . , ad) ∈ P

be the unique point of Pi−1 that is chosen to be in Rj . Let ` = `(a1, . . . , ad) and T = T (ψ1(a1, x1)+
· · ·+ψd−1(ad−1, xd−1)+ad−(t− i∆)). Since ψ1(a1, x1)+ · · ·+ψd−1(ad−1, xd−1)+ad−(t− i∆) ≥ ∆,

by Lemma 2.2, T ≥ D · 12e
√
ε/kq ≥ 5DnU2d ≥ 5nUdD`; in other words, nUdD ≤ T/(5`). Thus,

f∗j (x1, . . . , xd−1, t− i∆)

f̃j(x1, . . . , xd−1, t− i∆)
∈

[
`T − (n− 1)UdD

T + (n− 1)D
,
`T + (n− 1)UdD

T − (n− 1)D

]
⊂

[
`− 1/(5`)

1 + 1/(5`)
,
`+ 1/(5`)

1− 1/(5`)

]
⊂
(
`− 1

2
, `+

1

2

)
,

as desired.
Since each division costs at most O(log2M), each witness can be found in O(log2M log2 n)

time with success probability Ω(1). The total time for all (x1, . . . , xd−1) ∈ [F]d−1 is
O(F d−1 log2M log2 n) = O(F d−1E logO(1)(nEU)). We can find all witnesses correctly by repeat-
ing the algorithm an expected O(log(F d−1)) number of times (since verifying a given witness is
easy). Thus, the total time of the entire randomized (Las Vegas) algorithm remains the same in
expectation, up to polylogarithmic factors.

3.2 Small Improvement

In this subsection, we note a small speedup to the algorithm in Section 2 by exploiting fast Fourier
transform and fast rectangular matrix multiplication. This improvement is mainly of theoretical
interest (because of fast rectangular matrix multiplication).

For the base case of the dynamic program, observe that when a1, . . . , ad−1 are fixed, equation
(3) can be rewritten as a convolution of two p-dimensional vectors: letting A[ad] := wa1,...,ad and

B[x] = T (−x), we have g
(d)
a1,...,ad−1(t) ≡

∑
ad∈[p]A[ad]B[t − ad]. By fast Fourier transform, the

O(pd−1) convolutions require O(pd−1 · p log p) arithmetic operations.

8

For the main dynamic program, observe that equation (4) can be rewritten as a product of a
pd−2 × p2 matrix and a p2 × p2 matrix: letting

C[(a1, . . . , ai−1, xi+1, . . . , xd−1), (xi, t)] := g(i)a1,...,ai−1
(xi, . . . , xd−1, t)

A[(a1, . . . , ai−1, xi+1, . . . , xd−1), (ai, z)] := g(i+1)
a1,...,ai(xi+1, . . . , xd−1, z)

B[(ai, z), (xi, t)] :=

{
1 if z ≡ t− ψi(ai, xi) (mod p)
0 else,

we have C[ξ, η] ≡
∑

ζ A[ξ, ζ]B[ζ, η]. The computation requires O(pω(d−2,2,2)) arithmetic operations,

where ω(α, β, γ) denotes the matrix multiplication exponent for multiplying an nα×nβ and an nβ×
nγ matrix. All arithmetic operations are done modulo p. The running time of the dynamic program
is then O(pω(d−2,2,2) log2 p) = O(Eω(d/2−1,1,1) logO(1)E). The total over all O(

√
E logO(1)E) primes

p ∈ P gives O(Eω(d/2−1,1,1)+1/2 logO(1)E).

Theorem 3.1. Problem 2.1 can be solved in O((n
√
E+Eω(d/2−1,1,1)+1/2 +F d−1E) logO(1)E) time,

where E = d1/εe.

Note that ω(d/2− 1, 1, 1) = d/2 + δ(d) for some function δ(d) that approaches 0 as d→∞, by
known results on rectangular matrix multiplication [24, 26].

Since the improvement is small, we will ignore it in the applications in the following section.

4 Applications

We now sketch how our new algorithm for discrete upper envelopes and discrete Voronoi diagrams
automatically leads to better algorithms for various problems, by combining with existing tech-
niques from computational geometry. Since there are no new ideas here, we will only provide brief
explanations and refer to previous papers for the details in various places.

Diameter. Given a set P of n points in d dimensions, we consider the problem of computing a
(1 +O(ε))-factor approximation of the diameter, i.e, the distance of the farthest pair of points.

We can adopt the following standard algorithm, described in [21] (see also [3, 20]): First compute
a constant-factor approximation in O(n) time (e.g., by picking any arbitrary point of P and taking
the farthest neighbor distance from that point). By translation and scaling, we may assume that
the diameter is Θ(1) and P ⊂ [0, 1]d. Let Ξ be the set of all grid points over ∂[−1, 1]d with side
length δ :=

√
ε. For each ξ ∈ Ξ, find a point pξ ∈ P that maximizes pξ · ξ and a point qξ ∈ P that

maximizes −qξ · ξ, while allowing additive error O(ε). Return the maximum of pξ · ξ − qξ · ξ over
all ξ ∈ Ξ. See [21] for the correctness proof.

Observe that computing all the pξ’s and qξ’s corresponds to O(1) instances of the discrete
upper envelope problem (one per facet of ∂[−1, 1]d). By applying Theorem 2.3 with F =

√
E,

U = O(EF), and n ≤ EO(1), we immediately obtain:

Corollary 4.1. Given n points in constant dimension d, we can compute a (1 + ε)-approximation
of the diameter in O((n

√
E + Ed/2+1) logO(1)E) time, where E = d1/εe.

9

ε-Kernels. Given a set P of n points in d dimensions, an ε-kernel is a subset Q ⊂ P such that
for every vector v ∈ Rd, we have maxq∈Q q · v −minq∈Q q · v ≥ (1− ε)(maxp∈P p · v −minp∈P p · v).
Roughly speaking, the width of Q approximates the width of P along all directions simultaneously.
Alternatively, it can be viewed as a “coreset” for approximate convex hulls. The concept was
introduced by Agarwal, Har-Peled, and Varadarajan [1] and has a plethora of applications; see
[1, 2] for background.

Previous work [21, 31] suggested the following algorithm which computes an ε-kernel of worst-
case optimal size O((1/ε)(d−1)/2): First find an affine transformation that makes P fat and lie in
[−1, 1]d (fat means that the width along all directions is lower- and upper-bounded by a constant);
this is known to be doable in O(n) time. Let Ξ be the set of all grid points over ∂[−2, 2]d with side
length

√
ε. For each ξ ∈ Ξ, find a nearest neighbor pξ ∈ P to ξ, while allowing additive error O(ε).

Return the subset {pξ : ξ ∈ Ξ}. See [21] for the correctness proof.
Observe that computing all the pξ’s reduces to O(1) instances of the (d−1)-dimensional discrete

Voronoi diagram problem. (Note that we need witness finding here, as considered in Section 3.1.)
By Theorem 2.3, we immediately obtain:

Corollary 4.2. Given n points in constant dimension d, we can compute an ε-kernel of size
O(E(d−1)/2) in O((n

√
E + Ed/2+1) logO(1)E) expected time, where E = d1/εe.

Bichromatic closest pair. Given a set P of n red points and Q of n blue points in d dimensions,
we next examine the problem of finding a (1 + O(ε))-factor approximation of the closest red-blue
pair.

We first consider the “well-separated” case, where by translation, rotation, and scaling, we can
make P ⊂ [−1, 1]d−1 × [−2,−1] and Q ⊂ [−1, 1]d−1 × [1, 2]. Arya and Chan [6] suggested the
following algorithm to solve this case: Let Ξ be the set of all grid points over [−1, 1]d−1×{0} with
side length δ :=

√
ε. For each ξ ∈ Ξ, find a nearest neighbor pξ ∈ P to ξ and a nearest neighbor

qξ ∈ Q to ξ, while allowing additive error O(ε). Return the closest pair (pξ, qξ) over all ξ ∈ Ξ.
See [6] for the correctness proof.

Observe that computing all the pξ’s reduces to O(1) instances of the (d−1)-dimensional discrete
Voronoi diagram problem. (Again, we need witness finding.) By Theorem 2.3, the running time
is O((n

√
E +Ed/2+1) logO(1)E). An alternative upper bound is O(n2), by brute-force search. The

smaller of the two bounds is always at most O(nEd/4+1/2 logO(1)E).
As observed by Arya and Chan [6], a simple grid approach can reduce the general problem to a

number of well-separated instances whose input sizes sum to O(n). Thus, the total time is at most
O(nEd/4+1/2 logO(1)E).

Corollary 4.3. Given n red and blue points in constant dimension d, we can compute a (1 + ε)-
approximate bichromatic closest pair in O(nEd/4+1/2 logO(1)E) expected time, where E = d1/εe.

(Note that although the discrete Voronoi diagram algorithm in Section 2 generalizes to the Ls
metric for any constant even integer s ≥ 2, the reductions from diameter and bichromatic closest
pair to discrete Voronoi diagrams/upper envelopes as described above work only for the Euclidean
case. Fortunately, the algorithms we will present later in Section 5 generalize to the Ls metric.)

Approximate nearest neighbor search. The result for bichromatic closest pair can be ex-
tended to (offline or online) approximate nearest neighbor search, by following Arya and Chan [6].

10

The techniques are more involved, requiring balanced box decomposition trees and ideas from
earlier papers of Arya, da Fonseca, Malamatos, and Mount [12, 13]. We omit the details, but
by reexamining these previous papers closely (in particular, Section 9 of [12]) and incorporating
our new time bound for discrete Voronoi diagrams and discrete upper envelopes, we obtain the
following:

Corollary 4.4. We can preprocess n points in a constant dimension d in O(n log n) +O∗(nEd/4)
expected time so that we can find a (1 + ε)-approximate nearest neighbor to any query point in
O∗(Ed/4 log n) time, where E = d1/εe.

More generally, for any γ ∈ [0, d/2], we can obtain O∗(Eγn log n) expected preprocessing time
and O∗(Ed/2−γ log n) query time.

Streaming diameter and ε-kernels. Arya and Chan’s paper [6] also described an application
to insertion-only streaming algorithms for approximating the diameter. Their solution requires
first designing a data structure for approximate farthest neighbor queries using techniques similar
to [13, 12], and then combining with Bentley and Saxe’s logarithmic method (or “merge-and-
reduce”) [16]. We omit the details, but by examining [6] closely and incorporating our new time
bound for discrete Voronoi diagrams, we obtain:

Corollary 4.5. Given a stream of n points in constant dimension d, we can maintain a (1 +
ε)-approximation of the diameter using O(E(d−1)/2) space and supporting insertions in O∗(Ed/4)
expected time, where E = d1/εe.

The paper [6] also studied the insertion-only streaming algorithms for ε-kernels. Here, the
solution is easier. We first consider the special case where the point set P is promised to be fat and lie
in [0, 1]d at all times. If we insist onO(E(d−1)/2) space, we can handle insertions lazily until a block of
E(d−1)/2 points is read. Then following Section 4, we can recompute all the pξ’s and qξ’s by running

our discrete upper envelope algorithm on E(d−1)/2 points, taking O(Ed/2+1 logO(1)E) time. The
amortized insertion time is O(Ed/2+1 logO(1)E)/E(d−1)/2 = O(E3/2 logO(1)E). (Deamortization is
straightforward, as noted in [6].)

Building on an earlier streaming algorithm in [21], Zarrabi-Zadeh [32] has given a reduction of
the general problem to the above special case that does not increase the processing time or space
in the insertion-only streaming model. As a result, we obtain:

Corollary 4.6. Given a stream of n points in constant dimension d, we can maintain an ε-
kernel using O(E(d−1)/2) space and supporting insertions in O(E3/2 logO(1)E) expected time, where
E = d1/εe.

5 Second Algorithm

We now present an alternative algorithm for the diameter problem, which is also based on Cheby-
shev polynomials, but bypasses dynamic programming, instead using fast Fourier transform. It is
slightly faster (the Ed/2+1 term in the time bound is reduced to E(d+1)/2). It is also more direct,
without going through discrete upper envelopes. The algorithm can also be applied to the bichro-
matic closest pair problem. An advantage is that it can be generalized to the Ls metric for any even
integer constant s (although the algorithm for discrete Voronoi diagrams in Section 2 works also

11

for Ls, the reductions from diameter and bichromatic closest pair in Section 4 rely on properties of
Euclidean space).

Problem 5.1. (Generalized Diameter) Let d be a constant and ϕ be a d-variate O(1)-degree
polynomial with integer coefficients. Given two sets P and Q of n points in Zd, we want to compute

Z := max
(a1,...,ad)∈P, (b1,...,bd)∈Q

ϕ(a1 − b1, . . . , ad − bd)

while allowing additive error O(εU), where U is a known upper bound on |ϕ(a1 − b1, . . . , ad − bd)|
over all (a1, . . . , ad) ∈ P, (b1, . . . , bd) ∈ Q.

For example, for diameter in the Ls metric for an even integer constant s, we can first compute a
constant-factor approximation in O(n) time. By translation, scaling, and rounding, we may assume
that the diameter is Θ(E) and P ⊂ [E]d. Approximating the diameter with additive error O(εE) is
equivalent to approximate the s-th power of the diameter with additive error O(εEs). We then get
an instance of Problem 5.1 with ϕ(x1, . . . , xd) = xs1 + · · · + xsd. Here, U = O(Es), and n ≤ EO(1)

after removing duplicates.
We now solve Problem 5.1 using the polynomial method. It suffices to solve the decision

problem, of deciding whether the maximum is at least a given value t (with additive error O(εU)),
since the original problem can then be solved by binary search with O(logE) calls to the decision
algorithm.

Reset q :=
⌈√

E ln(4n2)
⌉

and let D and the degree-q polynomial T be as in Section 2. Define

Z̃ :=
∑

(a1,...,ad)∈P, (b1,...,bd)∈Q

T (ϕ(a1 − b1, . . . , ad − bd)− t).

By a similar analysis as in Section 2, we have:

• Case 1: Z ≤ t. Then Z̃ ≤ Dn2.

• Case 2: Z ≥ t+ εU . Then Z̃ > D(12e
q
√
ε − (n2 − 1)) > Dn2 by our choice of q.

It suffices to compute Z̃. At first Z̃ appears expensive to compute, since we are summing
n2 polynomials. We follow the approach in Section 2 and use the Chinese remainder theorem.

Define the set P of primes as before, with M := Dn2Tq(3) ≤ 2O(
√
E logO(1)(nEU)). We describe

how to compute Z̃ mod p for each p ∈ P. Afterwards, we can reconstruct Z̃ as before in at most
O(log2M) = O(E logO(1)(nEU)) time.

Fix a prime p ∈ P. As before, for each a1, . . . , ad ∈ [p], let wa1,...,ad be the number of points
(a′1, . . . , a

′
d) ∈ P such that a′1 ≡ a1, . . . , a

′
d ≡ ad (mod p). Similarly, for each b1, . . . , bd ∈ [p], let

vb1,...,bd be the number of points (b′1, . . . , b
′
d) ∈ Q such that b′1 ≡ b1, . . . , b

′
d ≡ bd (mod p). We

can precompute all these counts by a linear scan over P and Q, using O(n) arithmetic operations.
Then

Z̃ ≡
∑

a1,...,ad,b1,...,bd∈[p]

wa1,...,advb1,...,bdT (ϕ(a1 − b1, . . . , ad − bd)− t) (mod p) (5)

≡
∑

c1,...,cd∈[p]

uc1,...,cdT (ϕ(c1, . . . , cd)− t) (mod p), (6)

12

where
uc1,...,cd :=

∑
a1,...,ad∈[p]

wa1,...,adv(a1−c1) mod p,...,(ad−cd) mod p (mod p).

The key is to recognize this expression as a d-dimensional convolution (with wraparound indices
modulo p). This can be converted to standard 1-dimensional convolution as follows: Initialize arrays
A[0, . . . , (2p)d] and B[0, . . . , (2p)d] to 0. For each a1, . . . , ad ∈ [p], set A[a1(2p)

d−1+a2(2p)
d−2+· · ·+

ad] = wa1,...,ad . For each b1, . . . , bd ∈ [p], set B[(p− b1)(2p)d−1 + (p− b2)(2p)d−2 + · · ·+ (p− bd)] =
vb1,...,bd . Compute the convolution C[0, . . . , (2p)d] where C[i] :=

∑i
k=0A[k]B[i−k] (mod p). Then

for each c1, . . . , cd ∈ [p], set uc1,...,cd =
∑

j1,...,jd∈{0,1}C[(c1 + j1p)(2p)
d−1 + (c2 + jdp)(2p)

d−2 + · · ·+
(cd + jdp)] (mod p).

By fast Fourier transform, we can compute all uc1,...,cd values using O(pd log p) arithmetic op-

erations. Afterwards, we can compute Z̃ mod p by (6) using O(pd) arithmetic operations. This
assumes that we have precomputed T (x) for all x ∈ [p] (which straightforwardly requires O(pq)
arithmetic operations). All arithmetic operations are done modulo p, each costing at most O(log2 p)
time. The running time is thus O(pd log3 p) = O(logdM log3 logM) = O(Ed/2 logO(1)(nEU)).

Including the cost of computing the counts, the running time is O((n+Ed/2) logO(1)(nEU)) for
each fixed prime p. The total over all O(logM/ log logM) = O(

√
E logO(1)(nEU)) primes p ∈ P is

O((n
√
E + E(d+1)/2) logO(1)(nEU)).

Theorem 5.2. Problem 5.1 can be solved in O((n
√
E +E(d+1)/2) logO(1)(nEU)) time, where E =

d1/εe.

6 Applications

Ls-diameter. The algorithm in Section 5 can immediately be applied to approximate the farthest
pair in the Ls metric for any even integer constant s.

For the case of odd s, the algorithm in Section 5 is not immediately applicable to approximate
the farthest pair between P and Q unless P and Q are vertically separated in each of the d axes.
However, we can use standard range-tree divide-and-conquer to reduce to this separable case:
Suppose we are given two point sets P and Q such that all points in P are smaller than all points
in Q, or vice versa, in each of the first j coordinates. To approximate the farthest pair between P
and Q, we first find the median (j + 1)-th coordinate m, let PL (resp. QL) be all points of P (resp.
Q) with (j + 1)-th coordinate at most m, and let PR (resp. QR) be all points of P (resp. Q) with
(j + 1)-th coordinate greater than m. We recursively find the farthest pair between PL and QL,
between PR and QR, between PL and QR, and between PR and QL. When j = d, the algorithm in
Section 5 is applicable. The running time for n = |P |+ |Q| thus satisfies the recurrence

Tj(n) ≤

2Tj(n/2) + Tj+1(n) +O(n) if j < d

O((n
√
E + E(d+1)/2) logO(1)(nE)) if j = d

O(1) if n ≤ 2.

This implies T0(n) = O((n
√
E+E(d+1)/2) logO(1)(nE) logd n). Since n ≤ EO(1) (after initial round-

ing and removal of duplicates), we conclude:

Corollary 6.1. Given n points in constant dimension d and any integer constant s ≥ 2, we can
compute a (1 + ε)-approximation of the Ls-diameter in O((n

√
E +E(d+1)/2) logO(1)E) time, where

E = d1/εe.

13

Bichromatic Ls-closest pair. For bichromatic closest pair in the Ls metric for any even integer
constant s, it suffices to solve the well-separated case, as noted in Section 4, where P ⊂ BP and Q ⊂
BQ for two unit hypercubes BP and BQ of distance Θ(1) apart. (Note that we can no longer rotate.)
Approximating the closest pair distance with additive error O(ε) is equivalent to approximating the
s-th power of the closest pair distance with additive error O(ε). We can round and rescale so that
P,Q ⊂ [E]d. We then get an instance of Problem 5.1 with ϕ(x1, . . . , xd) = −(xs1 + · · ·+ xsd). Here,
U = O(Es), and n ≤ EO(1) after removing duplicates. The rest of the analysis is as in Section 4.
The case of odd s can again be handled by incorporating range-tree divide-and-conquer.

Corollary 6.2. Given n red and blue points in constant dimension d and any integer constant
s ≥ 2, we can compute a (1 + ε)-approximate bichromatic Ls-closest pair in O(nE(d+1)/4 logO(1)E)
time, where E = d1/εe.

7 Final Remarks

We now reveal the origins of the ideas behind our first algorithm in Section 2.

• The application of the polynomial method to approximately find extreme points along arbi-
trary directions was first proposed by Andoni and Nguyen [5], specifically for the dynamic
streaming model. This line of work was continued in [22] for the ε-kernel problem; in fact,
the idea of applying the Chinese remainder theorem and keeping the counts wa1,...,ad (which
are easy to maintain in the dynamic streaming setting) is taken from [22]. However, it has
not been realized before that the approach could give better algorithms in the standard non-
streaming setting. The previous streaming algorithms [5, 22] do not use dynamic program-
ming, which is an essential ingredient in our first algorithm. Also, these previous algorithms
constructed polynomials by summing q-th powers rather than degree-q Chebyshev polynomi-
als, which caused a larger degree bound on q (of the order E instead of

√
E) and thus larger

ε-dependencies in time and space complexity.

• The theoretical computer science literature contains a number of earlier applications of Cheby-
shev polynomials. The closest to our work are perhaps the papers by Valiant [29] and Alman,
Chan, and Williams [4] on approximate closest pair and offline nearest neighbor search in
high dimensions. The latter paper also played with sums of Chebyshev polynomials, but
the algorithms were put together quite differently. For example, they dealt primarily with
polynomials with Boolean variables, they needed to expand polynomials into monomials, and
they relied on fast matrix multiplication rather than dynamic programming.

• Related is another polynomial-method-based algorithm for #SAT by Chan and Williams [23].
There, a multivariate polynomial is evaluated over all points in {0, 1}m in near 2m time,
without fast matrix multiplication. This subproblem in Boolean space reduces to computing
a Möbius or zeta transform, for which a standard dynamic programming algorithm by Yates
can be invoked [30, 17]. Our dynamic programming algorithm, to evaluate a polynomial over
all points in the space [E]d, is not entirely “original” and can be viewed as a variant of Yates’
algorithm. (On the other hand, the previous discrete Voronoi diagram algorithm by Chan [21]
could also be viewed as a form of dynamic programming, though it is unrelated to polynomial
evaluation.)

14

Our second algorithm in Section 5 which exploits fast Fourier transform seems more original.
To our knowledge, fast Fourier transform has not been used before for any of the low-dimensional
geometric problems studied here.

The main advantage of the polynomial method is its generality. For example, the approach in
our second algorithm might potentially be applicable to kinetic variants of the diameter decision
problem where points are moving according to O(1)-degree polynomial functions in time.

We can consider a still more general version of the diameter problem than Problem 5.1,
where ϕ can be any (2d)-variate polynomial with integer coefficients and we seek Z :=
max(a1,...,ad)∈P, (b1,...,bd)∈Q ϕ(a1, . . . , ad, b1, . . . , bd). Fast Fourier transform does not seem applicable

here, and we have to adapt (5): Z̃ ≡
∑

a1,...,ad,b1,...,bd∈[p]wa1,...,advb1,...,bdT (ϕ(a1, . . . , ad, b1, . . . , bd)−t)
(mod p), which can be evaluated using O(p2d) arithmetic operations by brute force (instead of
O(pd log p)). This yields a slower (but still new) running time of O((n

√
E +Ed+(1/2)) logO(1)E) =

O∗(n+ Ed).
To close, we mention two specific open problems:

• Can we approximate the width of a point set in O∗(n+Ed/2) time? The issue is that knowing
an ε-kernel, we still need to compute the width of the kernel efficiently. This question has
just recently been answered in the affirmative in a new paper by Arya, da Fonseca, and
Mount [11].

• Can we approximate the diameter in O∗(n+Eαd) time for some absolute constant α < 1/2?

References

[1] P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan. Approximating extent measures of points. J.
ACM, 51(4):606–635, 2004.

[2] P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan. Geometric approximation via coresets. In
E. Welzl, editor, Current Trends in Combinatorial and Computational Geometry, pages 1–30. Cambridge
University Press, 2005.

[3] P. K. Agarwal, J. Matoušek, and S. Suri. Farthest neighbors, maximum spanning trees and related
problems in higher dimensions. Comput. Geom. Theory Appl., 1:189–201, 1991.

[4] J. Alman, T. M. Chan, and R. Williams. Polynomial representation of threshold functions and al-
gorithmic applications. In Proc. 57th IEEE Sympos. Found. Comput. Sci. (FOCS), pages 467–476,
2016.

[5] A. Andoni and H. L. Nguyen. Width of points in the streaming model. ACM Trans. Algorithms,
12(1):5:1–5:10, 2016.

[6] S. Arya and T. M. Chan. Better ε-dependencies for offline approximate nearest neighbor search, Eu-
clidean minimum spanning trees, and ε-kernels. In Proc. 30th Sympos. Comput. Geom. (SoCG), pages
416–425, 2014.

[7] S. Arya, G. D. da Fonseca, and D. M. Mount. Optimal area-sensitive bounds for polytope approximation.
In Proc. 28th Sympos. Comput. Geom. (SoCG), pages 363–372, 2012.

[8] S. Arya, G. D. da Fonseca, and D. M. Mount. On the combinatorial complexity of approximating
polytopes. In Proc. 32nd Sympos. Comput. Geom. (SoCG), pages 11:1–11:15, 2016.

[9] S. Arya, G. D. da Fonseca, and D. M. Mount. Near-optimal ε-kernel construction and related problems.
In Proc. 33rd Sympos. Comput. Geom. (SoCG), pages 10:1–10:15, 2017.

15

[10] S. Arya, G. D. da Fonseca, and D. M. Mount. Optimal approximate polytope membership. In Proc.
28th ACM–SIAM Sympos. Discrete Algorithms (SODA), pages 270–288, 2017.

[11] S. Arya, G. D. da Fonseca, and D. M. Mount. Approximate convex intersection detection with applica-
tions to width and Minkowski sums. In Proc. 26th Europ. Sympos. Algorithms (ESA), 2018.

[12] S. Arya, G. D. da Fonseca, and D. M. Mount. Approximate polytope membership queries. SIAM J.
Comput., 47(1):1–51, 2018.

[13] S. Arya, T. Malamatos, and D. M. Mount. Space-time tradeoffs for approximate nearest neighbor
searching. J. ACM, 57:1–54, 2009.

[14] S. Arya, D. M. Mount, N. Netanyahu, R. Silverman, and A. Y. Wu. An optimal algorithm for approxi-
mate nearest neighbor searching in fixed dimensions. J. ACM, 45:891–923, 1998.

[15] G. Barequet and S. Har-Peled. Efficiently approximating the minimum-volume bounding box of a point
set in three dimensions. J. Algorithms, 38(1):91–109, 2001.

[16] J. L. Bentley and J. B. Saxe. Decomposable searching problems I: Static-to-dynamic transformation.
J. Algorithms, 1(4):301–358, 1980.

[17] A. Björklund, T. Husfeldt, and M. Koivisto. Set partitioning via inclusion-exclusion. SIAM J. Comput.,
39(2):546–563, 2009.

[18] H. Breu, J. Gil, D. Kirkpatrick, and M. Werman. Linear time Euclidean distance transform algorithms.
IEEE Trans. Pattern Analysis and Machine Intelligence, 17:529–533, 1995.

[19] T. M. Chan. Approximate nearest neighbor queries revisited. Discrete Comput. Geom., 20:359–373,
1998.

[20] T. M. Chan. Approximating the diameter, width, smallest enclosing cylinder, and minimum-width
annulus. Int. J. Comput. Geom. Appl., 12(1-2):67–85, 2002.

[21] T. M. Chan. Faster core-set constructions and data-stream algorithms in fixed dimensions. Comput.
Geom. Theory Appl., 35(1-2):20–35, 2006.

[22] T. M. Chan. Dynamic streaming algorithms for ε-kernels. In Proc. 32nd Sympos. Comput. Geom.
(SoCG), pages 27:1–27:11, 2016.

[23] T. M. Chan and R. Williams. Deterministic APSP, orthogonal vectors, and more: Quickly derandom-
izing Razborov–Smolensky. In Proc. 27th ACM–SIAM Sympos. Discrete Algorithms (SODA), pages
1246–1255, 2016.

[24] D. Coppersmith. Rapid multiplication of rectangular matrices. SIAM J. Comput., 11(3):467–471, 1982.

[25] S. Har-Peled. A practical approach for computing the diameter of a point set. In Proc. 17th Sympos.
Comput. Geom. (SoCG), pages 177–186, 2001.

[26] X. Huang and V. Y. Pan. Fast rectangular matrix multiplication and applications. J. Complexity,
14(2):257–299, 1998.

[27] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 1995.

[28] O. Schwarzkopf. Parallel computation of distance transforms. Algorithmica, 6(5):685–697, 1991.

[29] G. Valiant. Finding correlations in subquadratic time, with applications to learning parities and the
closest pair problem. J. ACM, 62(2):13, 2015.

[30] F. Yates. The design and analysis of factorial experiments. Technical Communication No. 35, Com-
monwealth Bureau of Soil Science, Harpenden, UK, 1937.

[31] H. Yu, P. K. Agarwal, R. Poreddy, and K. R. Varadarajan. Practical methods for shape fitting and
kinetic data structures using coresets. Algorithmica, 52(3):378–402, 2008.

16

[32] H. Zarrabi-Zadeh. An almost space-optimal streaming algorithm for coresets in fixed dimensions. Al-
gorithmica, 60(1):46–59, 2011.

17

