
A Randomized Algorithm for Online Unit

Clustering?

Timothy M. Chan and Hamid Zarrabi-Zadeh

School of Computer Science, University of Waterloo
Waterloo, Ontario, Canada, N2L 3G1
{tmchan, hzarrabi}@uwaterloo.ca

Abstract. In this paper, we consider the online version of the following
problem: partition a set of input points into subsets, each enclosable by
a unit ball, so as to minimize the number of subsets used. In the one-
dimensional case, we show that surprisingly the näive upper bound of 2
on the competitive ratio can be beaten: we present a new randomized
15/8-competitive online algorithm. We also provide some lower bounds
and an extension to higher dimensions.

1 Introduction

Clustering problems—dividing a set of points into groups to optimize various
objective functions—are fundamental and arise in a wide variety of applications
such as information retrieval, data mining, and facility location. We mention two
of the most basic and popular versions of clustering:

Problem 1 (k-Center) Given a set of n points and a parameter k, cover the
set by k congruent balls, so as to minimize the radius of the balls.

Problem 2 (Unit Covering) Given a set of n points, cover the set by balls of
unit radius, so as to minimize the number of balls used.

Both problems are NP-hard in the Euclidean plane [10, 19]. In fact, it is NP-
hard to approximate the two-dimensional k-center problem to within a factor
smaller than 2 [9]. Factor-2 algorithms are known for the k-center problem [9,
11] in any dimension, while polynomial-time approximation schemes are known
for the unit covering problem [14] in fixed dimensions.

Recently, many researchers have considered clustering problems in more prac-
tical settings, for example, in the online and data stream models [4, 5, 12], where
the input is given as a sequence of points over time. In the online model, the
solution must be constructed as points arrive and decisions made cannot be
subsequently revoked; for example, in the unit covering problem, after a ball is
opened to cover an incoming point, the ball cannot be removed later. In the
related streaming model, the main concern is the amount of working space; as

? Work of the first author has been supported in part by NSERC.

points arrive, we must decide which point should be kept in memory. We focus
on the online setting in this paper.

The online version of the unit covering problem is one of the problems ad-
dressed in the paper by Charikar et al. [4]. They have given an upper bound of
O(2dd log d) and a lower bound of Ω(log d

log log log d
) on the competitive ratio of de-

terministic online algorithms in d dimensions; for d = 1 and 2, the lower bounds
are 2 and 4 respectively.

In this paper, we address the online version of the following variant:

Problem 3 (Unit Clustering) Given a set of n points, partition the set into
clusters (subsets), each of radius at most one, so as to minimize the number of
clusters used. Here, the radius of a cluster refers to the radius of its smallest
enclosing ball.

At first glance, Problem 3 might look eerily similar to Problem 2; in fact, in
the usual offline setting, they are identical. However, in the on-line setting, there
is one important difference: as a point p arrives, the unit clustering problem
only requires us to decide on the choice of the cluster containing p, not the ball
covering the cluster; the point cannot subsequently be reassigned to another
cluster, but the position of the ball may be shifted.

We show that it is possible to get better results for Problem 3 than Problem 2.
Interestingly we show that even in one dimension, the unit clustering problem
admits a nontrivial algorithm with competitive ratio better than 2, albeit by
using randomization. In contrast, such a result is not possible for unit covering.
To be precise, we present an online algorithm for one-dimensional unit clustering
that achieves expected competitive ratio 15/8 against oblivious adversaries. Our
algorithm is not complicated but does require a combination of ideas and a
careful case analysis. We contrast the result with a lower bound of 4/3 and also
extend our algorithm for the problem in higher dimensions under the L∞ metric.

We believe that the one-dimensional unit clustering problem itself is theoret-
ically appealing because of its utter simplicity and its connection to well-known
problems. For example, in the exact offline setting, one-dimensional unit cluster-
ing/covering is known to be equivalent to the dual problem of finding a largest
subset of disjoint intervals among a given set of unit intervals—i.e., finding max-
imum independent sets in unit interval graphs. Higher-dimensional generaliza-
tions of this dual independent set problem have been explored in the map labeling
and computational geometry literature [2, 3, 8], and online algorithms for vari-
ous problems about geometric intersection graphs have been considered (such
as [18]). The one-dimensional independent set problem can also be viewed as a
simple scheduling problem (dubbed “activity selection” by Cormen et al. [6]),
and various online algorithms about intervals and interval graphs (such as [1, 7,
16, 17]) have been addressed in the literature on scheduling and resource alloca-
tion. In the online setting, one-dimensional unit clustering is equivalent to clique
partitioning in unit interval graphs, and thus, equivalent to coloring in unit co-
interval graphs. It is known that general co-interval graphs can be colored with
competitive ratio at most 2 [13], and that, no online deterministic algorithm can

beat this 2 bound [15]. To the best of our knowledge, however, online coloring
of unit co-interval graphs has not been studied before.

2 Näıve Algorithms

In this section, we begin our study of the unit clustering problem in one dimen-
sion by pointing out the deficiencies of some natural strategies.

Recall that the goal is to assign points to clusters so that each cluster has
length at most 1, where the length of a cluster refers to the length of its smallest
enclosing interval. (Note that we have switched to using lengths instead of radii
in one dimension; all intervals are closed.) We say that a point lies in a cluster
if inserting it to the cluster would not increase the length of the cluster. We say
that a point fits in a cluster if inserting it to the cluster would not cause the
length to exceed 1. The following are three simple online algorithms, all easily
provable to have competitive ratio at most 2:

Algorithm 1 (Centered) For each new point p, if it is covered by an existing
interval, put p in the corresponding cluster, else open a new cluster for the unit
interval centered at p.

Algorithm 2 (Grid) Build a uniform unit grid on the line (where cells are
intervals of the form [i, i+ 1)). For each new point p, if the grid cell containing
p is nonempty, put p in the corresponding cluster, else open a new cluster for
the grid cell.

Algorithm 3 (Greedy) For each new point p, if p fits in some existing cluster,
put p in such a cluster, else open a new cluster for p.

The first two algorithms actually solve the stronger unit covering problem
(Problem 2). No such algorithms can break the 2 bound, as we can easily prove:

Theorem 1. There is a lower bound of 2 on the competitive ratio of any ran-
domized (and deterministic) algorithm for the online unit covering problem in
one dimension.

Proof. To show the lower bound for randomized algorithms, we use Yao’s tech-
nique and provide a probability distribution on the input sequences such that
the resulting expected competitive ratio for any deterministic online algorithm
is at least 2. The adversary provides a sequence of 3 points at position 1, x, and
1 + x, where x is uniformly distributed in [0, 1]. The probability that a deter-
ministic algorithm produces the optimal solution (of size 1 instead of 2 or more)
is 0. Thus, the expected value of the competitive ratio is at least 2. ut

The 2 bound on the competitive ratio is also tight for Algorithm 3: just
consider the sequence

〈

1
2
, 3

2
, . . . , 2k − 1

2

〉

followed by 〈0, 2, . . . , 2k〉 (where the
greedy algorithm uses 2k + 1 clusters and the optimal solution needs only k +
1 clusters). No random combination of Algorithms 1–3 can lead to a better
competitive ratio, as we can easily see by the same bad example. New ideas are
needed to beat 2.

3 The New Algorithm

In this section, we present a new randomized algorithm for the online unit clus-
tering problem. While the competitive ratio of this algorithm is not necessarily
less than 2, the algorithm is carefully designed so that when combined with
Algorithm 2 we get a competitive ratio strictly less than 2.

Our algorithm builds upon the simple grid strategy (Algorithm 2). To guard
against a bad example like

〈

1
2
, 3

2
, . . .

〉

, the idea is to allow two points in different
grid cells to be put in a common cluster “occasionally” (as controlled by random-
ization). Doing so might actually hurt, not help, in many cases, but fortunately
we can still show that there is a net benefit (in expectation), at least in the most
critical case.

To implement this idea, we form windows each consisting of two grid cells and
permit clusters crossing the two cells within a window but try to “discourage”
clusters crossing two windows. The details of the algorithm are delicate and are
described below. Note that only one random bit is used at the beginning.

Algorithm 4 (RandWindow) Group each two consecutive grid cells into a
window of the form [2i, 2i+2). With probability 1/2, shift all windows one unit to
the right. For each new point p, find the window w and the grid cell c containing
p, and do the following:

1: if w is empty then open a new cluster for p

2: else if p lies in a cluster then put p in that cluster

3: else if p fits in a cluster entirely inside c then put p in that cluster

4: else if p fits in a cluster intersecting w then put p in that cluster

5: else if p fits in a cluster entirely inside a neighboring window w′ and

6: w′ intersects > 1 clusters then put p in that cluster

7: else open a new cluster for p

To summarize: the algorithm is greedy-like and opens a new cluster only if
no existing cluster fits. The main exception is when the new point is the first
point in a window (line 1); another exception arises from the (seemly mysterious)
condition in line 6. When more than one cluster fits, the preference is towards
clusters entirely inside a grid cell, and against clusters from neighboring windows.
These exceptional cases and preference rules are vital to the analysis.

4 Analysis

For a grid cell (or a group of cells) x, the cost of x denoted by µ(x) is defined to
be the number of clusters fully contained in x plus half the number of clusters
crossing the boundaries of x, in the solution produced by our algorithm. Observe
that µ is additive, i.e., for two adjacent groups of cells x and y, µ(x ∪ y) =
µ(x) + µ(y). This definition of cost will be useful for accounting purposes.

To prepare for the analysis, we first make several observations concerning the
behavior of the RandWindow algorithm. In the following, we refer to a cluster
as a crossing cluster if it intersects two adjacent grid cells, or as a whole cluster
if it is contained completely in a grid cell.

Observation 1

(i) The enclosing intervals of the clusters are disjoint.
(ii) No grid cell contains two whole clusters.
(iii) If a grid cell c intersects a crossing cluster u1 and a whole cluster u2, then u2

must be opened after u1 has been opened, and after u1 has become a crossing
cluster.

Proof. (i) holds because of line 2. (ii) holds because line 3 precedes line 7.
For (iii), let p1 be the first point of u1 in c and p′1 be the first point of u1 in

a cell adjacent to c. Let p2 be the first point of u2. Among these three points, p1

cannot be the last to arrive: otherwise, p1 would be assigned to the whole cluster
u2 instead of u1, because line 3 precedes lines 4–7. Furthermore, p′1 cannot be
the last to arrive: otherwise, p1 would be assigned to u2 instead, again because
line 3 precedes lines 4–7. So, p2 must be the last to arrive. ut

For example, according to Observation 1(ii), every grid cell c must have
µ(c) ≤ 1 + 1

2
+ 1

2
= 2.

Let σ be the input sequence and opt(σ) be an optimal covering of σ by
unit intervals, with the property that the intervals are disjoint. (This property is
satisfied by some optimal solution, simply by repeatedly shifting the intervals to
the right.) We partition the grid cells into blocks, where each block is a maximal
set of consecutive grid cells interconnected by the intervals from opt(σ) (see
Fig. 1). Our approach is to analyze the cost of the solution produced by our
algorithm within each block separately.

B1 B2 B3

Fig. 1. Three blocks of sizes 2, 3, and 1.

A block of size k ≥ 2 contains exactly k−1 intervals from opt(σ). Define ρ(k)
to be the competitive ratio of the RandWindow algorithm within a block of
size k, i.e., ρ(k) upper-bounds the expected value of µ(B)/(k−1) over all blocks
B of size k. The required case analysis is delicate and is described in detail below.
The main case to watch out for is k = 2: any bound for ρ(2) strictly smaller than
2 will lead to a competitive ratio strictly smaller than 2 for the final algorithm
(as we will see in Section 5), although bounds for ρ(3), ρ(4), . . . will affect the
final constant.

I

c2

u1 u3

c1

B

u2

c2

u1 u2

c1

B

u4u3

I

Fig. 2. Impossibility of Subcase 1.1 (left) and Subsubcase 1.3.2 (right).

Theorem 2. ρ(2) = 7/4, ρ(3) = 9/4, ρ(4) ≤ 7/3, and ρ(k) ≤ 2k/(k− 1) for all
k ≥ 5.

Proof. We first analyze ρ(2). Consider a block B of size 2, consisting of cells c1
and c2 from left to right. Let I be the single unit interval in B in opt(σ). There
are two possibilities:

– Lucky Case: B falls completely in one window w. After a cluster u has
been opened for the new point (by line 1), all subsequent points in I are put
in the same cluster u (by lines 3 and 4). Note that the condition put in line 6
prevents points from the neighboring windows to join u and make crossing
clusters. So, u is the only cluster in B, and hence, µ(B) = 1.

– Unlucky Case: B is split between two neighboring windows. We first rule
out some subcases:

• Subcase 1.1: µ(c1) = 2. Here, c1 intersects three clusters 〈u1, u2, u3〉
(from left to right), where u1 and u3 are crossing clusters and u2 is a
whole cluster (see Fig. 2, left). By Observation 1(iii), u2 is opened after
u3 has become a crossing cluster, but then the points of u2 would be
assigned to u3 instead (because line 4 precedes line 7 and u2 ∪ u3 ⊂ I
has length at most 1): a contradiction.

• Subcase 1.2: µ(c2) = 2. Similarly impossible.
• Subcase 1.3: µ(c1) = µ(c2) = 3/2. We have only two scenarios:

∗ Subsubcase 1.3.1: B intersects three clusters 〈u1, u2, u3〉, where u2

is a crossing cluster, and u1 and u3 are whole clusters. By Observa-
tion 1(iii), u1 is opened after u2 has become a crossing cluster, but
then the points of u1 would be assigned to u2 instead (because of
line 4 and u1 ∪ u2 ⊂ I): a contradiction.

∗ Subsubcase 1.3.2: B intersects four clusters 〈u1, u2, u3, u4〉, where
u1 and u4 are crossing clusters and u2 and u3 are whole clusters
(see Fig. 2, right). W.l.o.g., say u2 is opened after u3. By Observa-
tion 1(iii), u2 is the last to be opened after u1, u3, u4, but then u2

would not be opened as points in u2 may be assigned to u3 (because
lines 5–6 precedes line 7, u2 ∪ u3 ⊂ I, and c2 intersects more than
one cluster): a contradiction.

In all remaining subcases, µ(B) = µ(c1) + µ(c2) ≤
3
2
+ 1 = 5

2
.

Since the lucky case occurs with probability exactly 1/2, we conclude that
ρ(2) ≤ 1

2
(1) + 1

2
(5
2
) = 7

4
. (This bound is tight.)

c2c1 c3

I1 I2

B

u2u1 u3

c2

u1

c1 c3

I1 I2

u6u3 u5u4u2

B

Fig. 3. Impossibility of Cases 2.1 (left) and 2.2 (right).

Next, we analyze ρ(3). Consider a block B of size 3, consisting of cells c1, c2, c3
from left to right. (It will not matter below whether c1 and c2 fall in the same
window, or c2 and c3 instead.) Let I1, I2 be the two unit intervals in B in opt(σ)
from left to right.

– Case 2.1: µ(c2) = 2. Here, c2 intersects three clusters 〈u1, u2, u3〉 (from left
to right), where u1 and u3 are crossing clusters and u2 is a whole cluster
(see Fig. 3, left). By Observation 1(iii), u2 is opened after u1 and u3 have
become crossing clusters, but then the points of u2 would be assigned to u1

or u3 instead (because of line 4 and u1 ∪ u2 ∪ u3 ⊂ I1 ∪ I2): a contradiction.
– Case 2.2: µ(c1) = µ(c3) = 2. Here, c1 intersects three clusters 〈u1, u2, u3〉

and c3 intersects three clusters 〈u4, u5, u6〉 (from left to right), where u1, u3,
u4, u6 are crossing clusters and u2, u5 are whole clusters (see Fig. 3, right).
Then u3 cannot be entirely contained in I1: otherwise, by Observation 1(iii),
u2 is opened after u1 and u3 have become crossing clusters, but then the
points of u2 would be assigned to u3 instead. Similarly, u4 cannot be entirely
contained in I2. However, this implies that the enclosing intervals of u3 and
u4 overlap: a contradiction.

– Case 2.3: µ(c1) = 2 and µ(c2) = µ(c3) = 3/2. Here, B intersects six clusters
〈u1, . . . , u6〉 (from left to right), where u1, u3, u6 are crossing clusters and
u2, u4, u5 are whole clusters. As in Case 2.2, u3 cannot be entirely contained
in I1. This implies that u4∪u5 ⊂ I2. We now proceed as in Subcase 1.3.2. Say
u4 is opened after u5 (the other scenario is symmetric). By Observation 1(iii),
u4 is the last to be opened after u3, u5, u6, but then u4 would not be opened
as points in u4 may be assigned to u5: a contradiction.

– Case 2.4: µ(c1) = µ(c2) = 3/2 and µ(c3) = 2. Similarly impossible.

In all remaining subcases, µ(B) = µ(c1)+µ(c2)+µ(c3) is at most 2+ 3
2
+1 = 9

2

or 3
2
+ 3

2
+ 3

2
= 9

2
. We conclude that ρ(3) ≤ 9/4. (This bound is tight.)

Now, we analyze ρ(4). Consider a block B of size 4, consisting of cells
c1, . . . , c4 from left to right. Let I1, I2, I3 be the three unit intervals in B in
opt(σ) from left to right.

– Case 3.1: µ(c1) = µ(c3) = 2. Here, c1 intersects three clusters 〈u1, u2, u3〉
and c3 intersects three clusters 〈u4, u5, u6〉 (from left to right), where u1, u3,
u4, u6 are crossing clusters and u2, u5 are whole clusters. As in Case 2.2, u3

cannot be entirely contained in I1. Thus, u4 ∪ u5 ∪ u6 ⊂ I2 ∪ I3. We now
proceed as in Case 2.1. By Observation 1(iii), u5 is opened after u4 and u6

have become crossing clusters, but then the points of u5 would be assigned
to u4 or u6 instead: a contradiction.

– Case 3.2: µ(c2) = µ(c4) = 2. Similarly impossible.

In all remaining subcases, µ(B) = (µ(c1) + µ(c3)) + (µ(c2) + µ(c4)) ≤ (2 +
3
2
) + (2 + 3

2
) ≤ 7. We conclude that ρ(4) ≤ 7/3.

For k ≥ 5, we use a rather loose upper bound. Consider a block B of size k.
As each cell c has µ(c) ≤ 2, we have µ(B) ≤ 2k, and hence ρ(k) ≤ 2k/(k−1). ut

5 The Combined Algorithm

We can now combine the RandWindow algorithm (Algorithm 4) with the Grid

algorithm (Algorithm 2) to obtain a randomized online algorithm with compet-
itive ratio strictly less than 2. Note that only two random bits in total are used
at the beginning.

Algorithm 5 (Combo) With probability 1/2, run RandWindow, else run Grid.

Theorem 3. Combo is 15/8-competitive (against oblivious adversaries).

Proof. The Grid algorithm uses exactly k clusters on a block of size k. Therefore,
the competitive ratio of this algorithm within a block of size k is k/(k − 1).

The following table shows the competitive ratio of the RandWindow, Grid,
and Combo algorithms, for all possible block sizes.

Block Size 2 3 4 k ≥ 5

Grid 2 3/2 4/3 k/(k − 1)
RandWindow 7/4 9/4 ≤ 7/3 ≤ 2k/(k − 1)

Combo 15/8 15/8 ≤ 11/6 ≤ 3/2 · k/(k − 1)

Table 1. The competitive ratio of the algorithms within a block.

As we can see, the competitive ratio of Combo within a block is always at
most 15/8. By summing over all blocks and exploiting the additivity of our cost
function µ, we see that expected total cost of the solution produced by Combo

is at most 15/8 times the size of opt(σ) for every input sequence σ. ut

We complement the above result with a quick lower bound argument:

Theorem 4. There is a lower bound of 4/3 on the competitive ratio of any
randomized algorithm for the online unit clustering problem in one dimension
(against oblivious adversaries).

Proof. We use Yao’s technique. Consider two point sequences P1 =
〈

1, 2, 1
2
, 5

2

〉

and P2 =
〈

1, 2, 3
2
, 3

2

〉

. With probability 2/3 the adversary provides P1, and with
probability 1/3 it provides P2. Consider a deterministic algorithm A. Regardless
of which point sequence is selected by the adversary, the first two points provided
to A are the same. If A clusters the first two points into one cluster, then it uses
3 clusters for P1 and 1 cluster for P2, giving the expected competitive ratio of
2
3
(3
2
)+ 1

3
(1) = 4

3
. If A clusters the first two points into two distinct clusters, then

no more clusters are needed to cover the other two points of P1 and P2. Thus,
the expected competitive ratio of A in this case is 2

3
· (1)+ 1

3
· (2) = 4

3
as well. ut

6 Beyond One Dimension

In the two-dimensional L∞-metric case, we want to partition the given point
set into subsets, each of L∞-diameter at most 1 (i.e., each enclosable by a unit
square), so as to minimize the number of subsets used. (See Fig. 4.)

Fig. 4. Unit clustering in the L∞ plane.

All the näive algorithms mentioned in Section 2, when extended to two di-
mensions, provide 4-competitive solutions to the optimal solution. Theorem 1
can be generalized to a deterministic lower bound of 4 on the competitive ratio
for the unit covering problem. We show how to extend Theorem 3 to obtain a
competitive ratio strictly less than 4 for unit clustering.

Theorem 5. There is a 15/4-competitive algorithm for the online unit cluster-
ing problem in the L∞ plane.

Proof. Our online algorithm is simple: just use Combo to find a unit clustering
Ci for the points inside each horizontal strip i ≤ y < i+ 1. (Computing each Ci

is indeed a one-dimensional problem.)
Let σ be the input sequence. We denote by σi the set of points from σ that lie

in the strip i ≤ y < i+1. Let Zi be an optimal unit covering for σi. Let O be an
optimal unit covering for σ, and Oi be the set of unit squares in O that intersect
the grid line y = i. Since all squares in Oi lie in the strip i−1 ≤ y < i+1, we have

|Zi| ≤ |Oi−1|+ |Oi|. Therefore
∑

i |Zi| ≤ 2|O|, so
∑

i |Ci| ≤
15
8

∑

i |Zi| ≤
15
4
|O|.
ut

The above theorem can easily be extended to dimension d > 2, with ratio
2d · 15/16.

7 Closing Remarks

We have shown that determining the best competitive ratio for the online unit
clustering problem is nontrivial even in the simplest one-dimensional case. The
obvious open problem is to close the gap between the 15/8 upper bound and
4/3 lower bound. An intriguing possibility that we haven’t ruled out is whether
a nontrivial result can be obtained without randomization at all. There is an
obvious 3/2 deterministic lower bound, but we do not see any simple argument
that achieves a lower bound of 2.

We wonder if ideas that are more “geometric” may lead to still better results
than Theorem 5. Our work certainly raises countless questions concerning the
best competitive ratio in higher-dimensional cases, for other metrics besides L∞,
and for other geometric measures of cluster sizes besides radius or diameter.

References

1. U. Adamy and T. Erlebach. Online coloring of intervals with bandwidth. In Proc.
1st Workshop Approx. Online Algorithms, volume 2909 of Lecture Notes Comput.
Sci., pages 1–12, 2003.

2. P. K. Agarwal, M. van Kreveld, and S. Suri. Label placement by maximum inde-
pendent set in rectangles. Comput. Geom. Theory Appl., 11:209–218, 1998.

3. T. M. Chan. Polynomial-time approximation schemes for packing and piercing fat
objects. J. Algorithms, 46:178–189, 2003.

4. M. Charikar, C. Chekuri, T. Feder, and R. Motwani. Incremental clustering and
dynamic information retrieval. SIAM J. Comput., 33(6):1417–1440, 2004.

5. M. Charikar, L. O’Callaghan, and R. Panigrahy. Better streaming algorithms for
clustering problems. In Proc. 35th ACM Sympos. Theory Comput., pages 30–39,
2003.

6. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-
rithms. MIT Press, Cambridge, MA, 2nd edition, 2001.

7. L. Epstein and M. Levy. Online interval coloring and variants. In Proc. 32nd
International Colloquium on Automata, Languages, and Programming (ICALP),
volume 3580 of Lecture Notes Comput. Sci., pages 602–613, 2005.

8. T. Erlebach, K. Jansen, and E. Seidel. Polynomial-time approximation schemes
for geometric intersection graphs. SIAM J. Comput., 34:1302–1323, 2005.

9. T. Feder and D. H. Greene. Optimal algorithms for approximate clustering. In
Proc. 20th ACM Sympos. Theory Comput., pages 434–444, 1988.

10. R. J. Fowler, M. S. Paterson, and S. L. Tanimoto. Optimal packing and covering
in the plane are NP-complete. Inform. Process. Lett., 12(3):133–137, 1981.

11. T. Gonzalez. Covering a set of points in multidimensional space. Inform. Process.
Lett., 40:181–188, 1991.

12. S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan. Clustering data streams.
In Proc. 41st IEEE Sympos. Found. Comput. Sci., pages 359–366, 2000.

13. A. Gyárfás and J. Lehel. On-line and First-Fit colorings of graphs. J. Graph
Theory, 12:217–227, 1988.

14. D. S. Hochbaum and W. Maas. Approximation schemes for covering and packing
problems in image processing and VLSI. J. ACM, 32:130–136, 1985.

15. H. A. Kierstead and J. Qin. Coloring interval graphs with First-Fit. SIAM J.
Discrete Math., 8:47–57, 1995.

16. H. A. Kierstead and W. A. Trotter. An extremal problem in recursive combina-
torics. Congressus Numerantium, 33:143–153, 1981.

17. R. J. Lipton and A. Tomkins. Online interval scheduling. In Proc. 5th Sympos.
Discrete Algorithms, pages 302–311, 1994.

18. M. V. Marathe, H. Breu, H. B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz. Simple
heuristics for unit disk graphs. Networks, 25:59–68, 1995.

19. N. Megiddo and K. J. Supowit. On the complexity of some common geometric
location problems. SIAM J. Comput., 13(1):182–196, 1984.

