## Timothy M. Chan's Publications: Dynamic subgraph connectivity

### Dynamic connectivity: connecting to networks and geometry

(with
Mihai Patrascu and Liam Roditty)

Dynamic connectivity is a well-studied problem, but so far the most compelling progress has been confined to the edge-update model: maintain an understanding of connectivity in an undirected graph, subject to edge insertions and deletions. In this paper, we study two more challenging, yet equally fundamental problems:

Subgraph connectivity asks to maintain an understanding of connectivity under vertex updates: updates can turn vertices on and off, and queries refer to the subgraph induced by on vertices. (For instance, this is closer to applications in networks of routers, where node faults may occur.) We describe a data structure supporting vertex updates in O~(m^{2/3}) amortized time, where m denotes the number of edges in the graph. This greatly improves over the previous result [STOC'02], which required fast matrix multiplication and had an update time of O(m^{0.94}). The new data structure is also simpler.

Geometric connectivity asks to maintain a dynamic set of n geometric objects, and query connectivity in their intersection graph. (For instance, the intersection graph of balls describes connectivity in a network of sensors with bounded transmission radius.) Previously, nontrivial fully dynamic results were known only for special cases like axis-parallel line segments and rectangles. We provide similarly improved update times, O~(n^{2/3}), for these special cases. Moreover, we show how to obtain sublinear update bounds for virtually all families of geometric objects which allow sublinear-time range queries. In particular, we obtain the first sublinear update time for arbitrary 2D line segments: O~(n^{9/10}); for d-dimensional simplices: O~(n^{1-1/(d(2d+1))}); and for d-dimensional balls: O~(n^{1-1/((d+1)(2d+3))}).

### Dynamic connectivity for axis-parallel rectangles

(with
Peyman Afshani)

In this paper we give a fully dynamic data structure to maintain the connectivity of the intersection graph of n axis-parallel rectangles. The amortized update time (insertion and deletion of rectangles) is O(n^{10/11} polylog n) and the query time (deciding whether two given rectangles are connected) is O(1). It slightly improves the update time (O(n^{0.94})) of the previous method while drastically reducing the query time (near O(n^{1/3})). Our method does not use fast matrix multiplication results and supports a wider range of queries.

### Dynamic subgraph connectivity with geometric applications

Inspired by dynamic connectivity applications in computational geometry, we consider a problem we call dynamic subgraph connectivity: design a data structure for an undirected graph G=(V,E) and a subset of vertices S\subset V, to support insertions and deletions in S and connectivity queries (are two vertices connected?) in the subgraph induced by S. We develop the first sublinear, fully dynamic method for this problem for general sparse graphs, using an elegant combination of several simple ideas. Our method requires linear space, O~(|E|^{4w/(3w+3)}) = O(|E|^{0.94}) amortized update time, and O~(|E|^{1/3}) query time, where w is the matrix multiplication exponent and O~ hides polylogarithmic factors.

Copyright Notice

The documents contained in this directory are included by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, notwithstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.

Timothy Chan (Last updated September 2018)