We study a longstanding problem in computational geometry: dynamic 2-d orthogonal point location, i.e., vertical ray shooting among n horizontal line segments. We present a data structure achieving O(log n / loglog n) optimal expected query time and O(log^{1/2+epsilon} n) update time (amortized) in the word-RAM model for any constant epsilon > 0, under the assumption that the x-coordinates are integers bounded polynomially in n. This substantially improves previous results of Giyora and Kaplan [SODA 2007] and Blelloch [SODA 2008] with O(log n) query and update time, and of Nekrich (2010) with O(log n / loglog n) query time and O(log^{1+epsilon} n) update time. Our result matches the best known upper bound for simpler problems such as dynamic 2-d dominance range searching.
We also obtain similar bounds for orthogonal line segment intersection reporting queries, vertical ray stabbing, and vertical stabbing-max, improving previous bounds, respectively, of Blelloch [SODA 2008] and Mortensen [SODA 2003], of Tao (2014), and of Agarwal, Arge, and Yi [SODA 2005] and Nekrich [ISAAC 2011].
We study a longstanding problem in computational geometry: 2-d dynamic orthogonal range reporting. We present a new data structure achieving O(log n/loglog n + k) optimal query time and O(log^{2/3+o(1)}n) update time (amortized) in the word RAM model, where n is the number of data points and k is the output size. This is the first improvement in over 10 years of Mortensen's previous result [SIAM J. Comput., 2006], which has O(log^{7/8+epsilon}n) update time for an arbitrarily small constant epsilon.
In the case of 3-sided queries, our update time reduces to O(log^{1/2+epsilon}n), improving Wilkinson's previous bound [ESA 2014] of O(log^{2/3+epsilon}n).
Introduced by Agarwal, Har-Peled, and Varadarajan (2004), an epsilon-kernel of a point set is a coreset that can be used to approximate the width, minimum enclosing cylinder, minimum bounding box, and solve various related geometric optimization problems. Such coresets form one of the most important tools in the design of linear-time approximation algorithms in computational geometry, as well as efficient insertion-only streaming algorithms and dynamic (non-streaming) data structures. In this paper, we continue the theme and explore dynamic streaming algorithms (in the so-called turnstile model).
Andoni and Nguyen [SODA'12] described a dynamic streaming algorithm for maintaining a (1+epsilon)-approximation of the width using O(polylog U) space and update time for a point set in [U]^d for any constant dimension d and any constant epsilon > 0. Their sketch, based on a polynomial method, does not explicitly maintain an epsilon-kernel. We extend their method to maintain an epsilon-kernel, and at the same time reduce some of logarithmic factors. As an application, we obtain the first randomized dynamic streaming algorithm for the width problem (and related geometric optimization problems) that supports k outliers, using poly(k, log U) space and time.
We describe a fully dynamic linear-space data structure for point location in connected planar subdivisions, or more generally vertical ray shooting among non-intersecting line segments, that supports queries in O(log n (loglog n)^2) time and updates in O(log n loglog n) time. This is the first data structure that achieves close to logarithmic query and update time simultaneously, ignoring loglog n factors. We further show how to reduce the query time to O(log n loglog n) in the RAM model with randomization. Alternatively, the query time can be lowered to O(log n) if the update time is increased to O(log^{1+eps}n) for any constant eps>0, or vice versa.
We give a fully dynamic data structure for maintaining an approximation of the Hausdorff distance between two point sets in a constant dimension d, a standard problem in computational geometry. Our solution has an approximation factor of 1+epsilon for any constant epsilon>0 and expected update time O(log U/loglog n}). The result of the paper greatly improves over the previous exact method, which required O~(n^{5/6}) time and worked only in a semi-online setting. The model of computation is the word RAM model.
At SODA'10, Agarwal and Sharathkumar presented a streaming algorithm for approximating the minimum enclosing ball of a set of points in d-dimensional Euclidean space. Their algorithm requires one pass, uses O(d) space, and was shown to have approximation factor at most (1+sqrt{3})/2 + eps ~ 1.3661. We prove that the same algorithm has approximation factor less than 1.22, which brings us much closer to a (1+sqrt{2})/2 ~ 1.207 lower bound given by Agarwal and Sharathkumar.
We also apply this technique to the dynamic version of the minimum enclosing ball problem (in the non-streaming setting). We give an O(dn)-space data structure that can maintain a 1.22-approximate minimum enclosing ball in O(d log n) expected amortized time per insertion/deletion.
We present three results related to dynamic convex hulls:
Dynamic connectivity is a well-studied problem, but so far the most compelling progress has been confined to the edge-update model: maintain an understanding of connectivity in an undirected graph, subject to edge insertions and deletions. In this paper, we study two more challenging, yet equally fundamental problems:
Subgraph connectivity asks to maintain an understanding of connectivity under vertex updates: updates can turn vertices on and off, and queries refer to the subgraph induced by on vertices. (For instance, this is closer to applications in networks of routers, where node faults may occur.) We describe a data structure supporting vertex updates in O~(m^{2/3}) amortized time, where m denotes the number of edges in the graph. This greatly improves over the previous result [STOC'02], which required fast matrix multiplication and had an update time of O(m^{0.94}). The new data structure is also simpler.
Geometric connectivity asks to maintain a dynamic set of n geometric objects, and query connectivity in their intersection graph. (For instance, the intersection graph of balls describes connectivity in a network of sensors with bounded transmission radius.) Previously, nontrivial fully dynamic results were known only for special cases like axis-parallel line segments and rectangles. We provide similarly improved update times, O~(n^{2/3}), for these special cases. Moreover, we show how to obtain sublinear update bounds for virtually all families of geometric objects which allow sublinear-time range queries. In particular, we obtain the first sublinear update time for arbitrary 2D line segments: O~(n^{9/10}); for d-dimensional simplices: O~(n^{1-1/(d(2d+1))}); and for d-dimensional balls: O~(n^{1-1/((d+1)(2d+3))}).
We give a dynamic data structure that can maintain an epsilon-coreset of n points, with respect to the extent measure, in O(log n) time for any constant epsilon > 0 and any constant dimension. The previous method by Agarwal, Har-Peled, and Varadarajan requires polylogarithmic update time. For points with integer coordinates bounded by U, we alternatively get O(log log U) time. Numerous applications follow, for example, on dynamically approximating the width, smallest enclosing cylinder, minimum bounding box, or minimum-width annulus. We can also use the same approach to maintain approximate k-centers in O(min{log n, log log U}) randomized amortized time for any constant k and any constant dimension. For the smallest enclosing cylinder problem, we also show that a constant-factor approximation can be maintained in O(1) randomized amortized time on the word RAM.
In this paper we give a fully dynamic data structure to maintain the connectivity of the intersection graph of n axis-parallel rectangles. The amortized update time (insertion and deletion of rectangles) is O(n^{10/11} polylog n) and the query time (deciding whether two given rectangles are connected) is O(1). It slightly improves the update time (O(n^{0.94})) of the previous method while drastically reducing the query time (near O(n^{1/3})). Our method does not use fast matrix multiplication results and supports a wider range of queries.
We present a fully dynamic randomized data structure that can answer queries about the convex hull of a set of n points in three dimensions, where insertions take O(log^3 n) expected amortized time, deletions take O(log^6 n) expected amortized time, and extreme-point queries take O(log^2 n) worst-case time. This is the first method that guarantees polylogarithmic update and query cost for arbitrary sequences of insertions and deletions, and improves the previous O(n^epsilon)-time method by Agarwal and Matousek a decade ago. As a consequence, we obtain similar results for nearest neighbor queries in two dimensions and improved results for numerous fundamental geometric problems (such as levels in three dimensions and dynamic Euclidean minimum spanning trees in the plane).
The documents contained in this directory are included by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, notwithstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.