Timothy M. Chan's Publications: Streaming geometric algorithms


Dynamic streaming algorithms for epsilon-kernels

Introduced by Agarwal, Har-Peled, and Varadarajan (2004), an epsilon-kernel of a point set is a coreset that can be used to approximate the width, minimum enclosing cylinder, minimum bounding box, and solve various related geometric optimization problems. Such coresets form one of the most important tools in the design of linear-time approximation algorithms in computational geometry, as well as efficient insertion-only streaming algorithms and dynamic (non-streaming) data structures. In this paper, we continue the theme and explore dynamic streaming algorithms (in the so-called turnstile model).

Andoni and Nguyen [SODA'12] described a dynamic streaming algorithm for maintaining a (1+epsilon)-approximation of the width using O(polylog U) space and update time for a point set in [U]^d for any constant dimension d and any constant epsilon > 0. Their sketch, based on a polynomial method, does not explicitly maintain an epsilon-kernel. We extend their method to maintain an epsilon-kernel, and at the same time reduce some of logarithmic factors. As an application, we obtain the first randomized dynamic streaming algorithm for the width problem (and related geometric optimization problems) that supports k outliers, using poly(k, log U) space and time.


Streaming and dynamic algorithms for minimum enclosing balls in high dimensions

(with Vinayak Pathak)

At SODA'10, Agarwal and Sharathkumar presented a streaming algorithm for approximating the minimum enclosing ball of a set of points in d-dimensional Euclidean space. Their algorithm requires one pass, uses O(d) space, and was shown to have approximation factor at most (1+sqrt{3})/2 + eps ~ 1.3661. We prove that the same algorithm has approximation factor less than 1.22, which brings us much closer to a (1+sqrt{2})/2 ~ 1.207 lower bound given by Agarwal and Sharathkumar.

We also apply this technique to the dynamic version of the minimum enclosing ball problem (in the non-streaming setting). We give an O(dn)-space data structure that can maintain a 1.22-approximate minimum enclosing ball in O(d log n) expected amortized time per insertion/deletion.


A simple streaming algorithm for minimum enclosing balls

(with Hamid Zarrabi-Zadeh)

We analyze an extremely simple approximation algorithm for computing the minimum enclosing ball (or the 1-center) of a set of points in high dimensions. We prove that this algorithm computes a 3/2-factor approximation in any dimension using minimum space in just one pass over the data points.


Multi-pass geometric algorithms

(with Eric Y. Chen)

We initiate the study of exact geometric algorithms that require limited storage and make only a small number of passes over the input. Fundamental problems such as low-dimensional linear programming and convex hulls are considered.


Geometric optimization problems over sliding windows

(with Bashir S. Sadjad)

We study the problem of maintaining a (1+epsilon)-factor approximation of the diameter of a stream of points under the sliding window model. In one dimension, we give a simple algorithm that only needs to store O((1/epsilon) log R) points at any time, where the parameter R denotes the "spread" of the point set. This bound is optimal and improves Feigenbaum, Kannan, and Zhang's recent solution by two logarithmic factors. We then extend our one-dimensional algorithm to higher constant dimensions and, at the same time, correct an error in the previous solution. In high nonconstant dimensions, we also observe a constant-factor approximation algorithm that requires sublinear space. Related optimization problems, such as the width, are also considered in the two-dimensional case.


Faster core-set constructions and data-stream algorithms in fixed dimensions

We speed up previous (1+epsilon)-factor approximation algorithms for a number of geometric optimization problems in fixed dimensions: diameter, width, minimum-radius enclosing cylinder, minimum-width annulus, minimum-volume bounding box, minimum-width cylindrical shell, etc. Linear time bounds were known before; we further improve the dependence of the "constants" in terms of epsilon.

We next consider the data stream model and present new (1+epsilon)-factor approximation algorithms that need only constant space for all of the above problems in any fixed dimension. Previously, such a result was known only for diameter.

Both sets of results are obtained using the core-set framework recently proposed by Agarwal, Har-Peled, and Varadarajan.


Copyright Notice

The documents contained in this directory are included by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, notwithstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.


Timothy Chan (Last updated April 2018)