
A Note on Maximum Independent Sets in Rectangle Intersection

Graphs

Timothy M. Chan∗

School of Computer Science

University of Waterloo

Waterloo, Ontario N2L 3G1, Canada

tmchan@uwaterloo.ca

September 12, 2003

Abstract

Finding the maximum independent set in the intersection graph of n axis-parallel rectangles

is NP-hard. We re-examine two known approximation results for this problem. For the case of

rectangles of unit height, Agarwal, van Kreveld, and Suri (1997) gave a (1+1/k)-factor algorithm

with an O(n log n + n2k−1) time bound for any integer constant k ≥ 1; we describe a similar
algorithm running in only O(n log n+ n∆k−1) time, where ∆ ≤ n denotes the maximum number

of rectangles a point can be in. For the general case, Berman, DasGupta, Muthukrishnan, and

Ramaswami (2001) gave a dlogk ne-factor algorithm with an O(nk+1) time bound for any integer

constant k ≥ 2; we describe similar algorithms running in O(n log n + n∆k−2) and nO(k/ log k)

time.

Keywords: Approximation algorithm; Computational geometry; Dynamic programming

1 Introduction

The subject of this note is the following (henceforth, “the problem”): given a collection C of n axis-

parallel rectangles in the plane, find a largest subcollection S∗ of disjoint rectangles, or equivalently,

find a maximum independent set in the intersection graph of the rectangles. The problem has

interested several groups of researchers [1, 2, 3, 5, 7, 9], due to applications ranging from map

labeling to data mining. As the problem is NP-hard [6, 8], attention is focused on finding efficient

approximation algorithms.

See [3] for a more comprehensive discussion of past results. The earliest result was perhaps the

“shifting”-based polynomial-time approximation scheme by Hochbaum and Maass [7] for the special

case of unit squares. Originally, the scheme required nO(k2) time to guarantee an approximation

factor of 1 + 1/k. Subsequent improvements have reduced the running time somewhat. Notably,

Agarwal, van Kreveld, and Suri [1] described a refinement with a time and space bound of O(n2k−1)

for any constant integer k ≥ 2. This algorithm worked more generally for unit-height rectangles,

∗This work was supported in part by an NSERC Research Grant.

1

which arise in the application to map labeling for a fixed font size. For k = 1 (factor 2), the

algorithm is almost trivial and runs in O(n logn) time.

Generalizing in another direction, Erlebach, Jansen, and Seidel [5] and the author [3] have recently

obtained polynomial-time approximation schemes for arbitrary squares. To get factor 1 + 1/k, the

required running time is nO(k2) and nO(k), respectively.

For arbitrary rectangles, the problem is open. As several researchers have independently ob-

served [1, 9, 10], a logarithmic approximation factor is certainly possible. For example, Agarwal,

van Kreveld, and Suri [1] described a straightforward O(n logn)-time algorithm with factor at most

dlog2 ne (in fact, dlog2 |S
∗|e—see [10]). Currently, no polynomial-time algorithm is known with

o(log n) approximation factor, although Berman et al. [2] have recently observed that the logn bound

can be reduced by an arbitrary constant multiple. Specifically, factor dlogk ne can be achieved in

O(nk|S∗|) time.

Our new results involve a few modest improvements:

• For unit-height rectangles, we simplify and speed up Agarwal et al.’s dynamic programming

algorithm [1] to run in O(nk) worst-case time, for the same approximation factor 1+1/k. The

time bound is actually O(n logn + n∆k−1), where ∆ denotes the maximum depth. Here, the

depth of a point is the number of rectangles containing the point. In map labeling applications,

the value of ∆ is small (close to a constant), so our result suggests that the dynamic program-

ming approach may not be as impractical as previously thought. (For example, factor 3/2

requires only O(n logn+n∆) time, not cubic.) The space usage is bounded by O(n+n′∆k−1),

where n′ is the maximum number of rectangles a horizontal line can intersect; in practice, n′

is likely to be much smaller than n.

• For arbitrary rectangles, we show that a modification of Agarwal et al.’s dlog2 ne divide-and-

conquer algorithm that incorporates the dynamic programming subroutine can find a factor-

dlogk ne solution in O(n logn + n∆k−2) time. The resulting algorithm is simpler and faster

(and thus more practical) than Berman et al.’s [2]. The space usage is O(n+ n′∆k−2).

On the theoretical side, we also derive a better worst-case time bound in terms of n. We show

that factor near dlogk ne requires O(nf(k)) time for some function f(k) = O(k/ log k). For

small k, the time bound is actually quite reasonable (for example, f(3) < 1.369, f(4) = 1.5,

f(5) < 1.635, and f(8) = 2).

The techniques we use are hardly original; the basic dynamic programming strategy, as well as

the divide-and-conquer idea, can be found (independently and in different forms) in the papers of

Agarwal et al. [1] and Berman et al. [2]. The improvements come mostly from a more careful usage

of these techniques and, at the same time, an attempt to keep things simple.

2 A Dynamic Programming Subroutine

Lemma 2.1 Fix an integer constant k ≥ 1. If all the rectangles can be stabbed by k horizontal lines,

then we can solve the problem exactly in O(n logn+ n∆k−1) time.

Proof: Let R1, . . . , Rn be the given rectangles. Let ai and bi be the left and right x-coordinate

of Ri. By sorting, assume that a1 ≤ · · · ≤ an ≤ an+1 = ∞. Let next [j] denote the smallest index i

2

with ai > bj . For a set S of rectangles, let S| i denote the subset of rectangles in S intersecting the

vertical line x = ai.

A subproblem is created for each index i and each subset S of disjoint rectangles intersecting

x = ai with |S| ≤ k − 1: define A[i, S] to be the maximum number of disjoint rectangles among

Ri, . . . , Rn that do not intersect the rectangles in S. These numbers can be computed from i = n+1

to 1 by the following rules.

1. For the base case, A[n+ 1, ∅] = 0.

2. If Ri intersects some rectangle in S, then

A[i, S] = A[i+ 1, S| i+1],

because Ri cannot be used in the solution to the subproblem.

3. Otherwise, if |S| < k − 1, then

A[i, S] = max
{

A[i+ 1, S| i+1], 1 +A[i+ 1, (S ∪ {Ri})| i+1]
}

,

because the first term corresponds to the case where Ri is not used in the solution, and the

second term corresponds to the case where Ri is used.

4. Otherwise, |S| = k − 1. Let t be the smallest next [j] value over all rectangles Rj ∈ S ∪ {Ri}.

Then

A[i, S] = max
{

A[i+ 1, S| i+1], 1 +A[t, (S ∪ {Ri})| t]
}

,

because if Ri is used in the solution, then all other rectangles in the solution must be to

the right of some rectangle in S ∪ {Ri}, and thus t (otherwise, we would have k + 1 disjoint

rectangles intersecting a vertical line, contradicting the assumption of the lemma). Note that

|(S ∪ {Ri})| t| ≤ k − 1 by the choice of t.

The maximum number of disjoint rectangles is A[1, ∅]. The actual collection of disjoint rectangles can

be retrieved in the usual way. By the assumption of the lemma, there are O(n∆k−1) subproblems. So,

excluding sorting of x-coordinates (needed to initialize the next entries), this dynamic programming

algorithm runs in O(n∆k−1) time.

One implementation issue remains to be addressed: to use O(n∆k−1) space instead of O(nk) for

the array A, we need to first map tuples (i, S) to indices. This can be done by sorting (lexicograph-

ically) all tuples occurring in both sides of the above equations, and assigning a common index to

identical tuples. By radix sort, the additional running time is O(n∆k−1). 2

3 The Unit-Height Case

Theorem 3.1 Fix an integer constant k ≥ 1. If all rectangles have unit height, then we can solve

the problem approximately to within a factor of 1 + 1/k in O(n logn+ n∆k−1) time.

Proof: We use a shifting idea.

3

1. For each i = 0, . . . , k, let C(i) be the subcollection of all rectangles that do not intersect any

grid horizontal line y = ` with ` ≡ i mod (k + 1). Now, C(i) is a union of groups of rectangles,

where each group can be stabbed by k horizontal lines (because the rectangles have unit height)

and no two rectangles from different groups intersect. We can thus solve the problem for each

group by Lemma 2.1, and take the union to obtain the solution S(i) to C(i).

2. Return the largest set S among S(0), . . . , S(k).

The running time sums to O(n logn+ n∆k−1).

Since each unit-height rectangle belongs to exactly k of the k + 1 subcollections C (0), . . . , C(k),

k|S∗| =
k

∑

i=0

|S∗ ∩ C(i)| ≤
k

∑

i=0

|S(i)| ≤ (k + 1)|S|,

implying that |S∗| ≤ (1 + 1/k)|S|. 2

4 The General Case

Theorem 4.1 Fix an integer constant k ≥ 2. If we are given H > 1 horizontal lines that stab all

rectangles, then we can solve the problem approximately to within a factor of dlogk He in O(n logn+

n∆k−2) time.

Proof: We use divide-and-conquer.

1. The base case, H ≤ k, can be handled directly by Lemma 2.1.

2. Let `1, . . . , `k−1 be the dH/ke-th, 2dH/ke-th, . . . , (k−1)dH/ke-th lowest horizontal lines (with

`0 at y = −∞ and `k at y =∞).

3. Let C(0) be the subcollection of all rectangles stabbed by these k − 1 lines. We can compute

the exact solution S(0) to C(0) by Lemma 2.1.

4. For each i = 1, . . . , k, let C(i) be the subcollection of all rectangles that lie entirely between

`i−1 and `i. Now, C
(i) is stabbed by dH/ke horizontal lines. We can compute an approximate

solution S(i) to C(i) recursively.

5. Return the larger of the two sets S(0) and S(1) ∪ · · · ∪ S(k).

The running time is dominated by step 3 and sums to O(n logn+ n∆k−2).

To analyze the approximation factor, let S be the final returned solution. Consider the recursion

tree generated and let C
(0)
v and S

(0)
v be sets corresponding to node v of the tree. Then

∑

v

|S∗ ∩ C(0)
v | ≤

∑

v

|S(0)
v | ≤ |S|,

where the sums are over all nodes at any fixed level of the tree. Summing over all levels yield

|S∗| ≤ |S|dlogk He. 2

4

5 More on the General Case

If ∆ is polylogarithmic, we can set k = Θ(logε n) for a small constant ε > 0 in Theorem 4.1 to

get a polynomial-time algorithm with factor O(logn/ log logn) (since the hidden constant in the

time bound depends polynomially on k). For an arbitrary ∆, however, we are unable to obtain

an approximation factor of o(log n) in polynomial time; instead, we concentrate on improving the

dependence on n in the running time.

In the worst case, Theorem 4.1 yields factor dlogk ne in O(nk−1) time (k ≥ 3). This worst-case

bound can be improved, for example, by using larger branching factors (instead of k) at deeper

levels of the tree (as n decreases). A still better bound can be obtained by a different approach

which we describe now. This approach exploits the “unweightedness” of the problem (in contrast,

all the algorithms we have given so far can be extended to solve the maximum-weight independent

set problem for input rectangles with weights).

Corollary 5.1 Fix an integer constant k ≥ 2. We can solve the problem approximately to within a

factor of dlogk |S
∗|e in O(n logn+ n∆k−2) time.

Proof: Project the rectangles onto the y-axis. We can find the smallest set of points that stab the

resulting (one-dimensional) y-intervals by the standard greedy algorithm, in linear time after sorting.

As is well-known, in one dimension, the smallest number of stabbing points, H, is equal to the largest

number of disjoint intervals. Thus, H ≤ |S∗|. The result follows from Theorem 4.1. 2

Corollary 5.2 Fix an integer constant k ≥ 2. Given d, we can compute a solution S with |S∗| ≤

|S|dlogk |S
∗|e+ n/d in O(n logn+ ndk−2) time.

Proof: We use a greedy strategy. Repeatedly find a point p of depth ≥ d and remove all rectangles

stabbed by p, until the remaining collection of rectangles, C ′, have maximum depth < d. Then return

the solution to C ′ by Corollary 5.1.

The number of iterations is at most n/d, since at least d rectangles are removed per iteration.

Since C − C′ can be stabbed by at most n/d points, there can be at most n/d disjoint rectangles in

C − C′. Thus, |S∗ − C′| ≤ n/d, and |S∗ ∩ C′| ≤ |S|dlogk |S
∗ ∩ C′|e. The approximation bound follows.

To analyze the running time, observe that a standard sweep-line algorithm can compute the

maximum depth in a collection of n axis-parallel rectangles in O(n logn) time; for example, see [4].

This algorithm stores the rectangles that intersect the sweep line in a tree structure supporting

logarithmic-time insertions and deletions, and maintains the maximum depth at the sweep line, as

we move from left to right. We can modify the algorithm so that as soon as a point p of depth ≥ d is

discovered, we delete the rectangles stabbed by p from the data structure, and resume the sweep. As

the total number of deletions is still bounded by n, the total time required to implement the greedy

phase remains O(n logn). 2

Corollary 5.3 Fix real constants b > 2 and ε > 0. We can solve the problem approximately to

within a factor of (1 + ε)dlogb ne in O(nf(b)) time, where

f(b) := 1 + max
i=1,...,dbe−1

(i− 1)(1− logb i) = O(b/ log b).

5

Proof: Run the algorithm in Corollary 5.2 for each k = 2, . . . , dbe with d = Cn1−logb(k−1) for a

sufficiently large constant C, and return the largest solution S found. The time bound holds.

To analyze the approximation factor, let k be such that nlogb(k−1) ≤ |S∗| ≤ nlogb k. Then

|S∗| ≤ |S|dlogk |S
∗|e+ nlogb(k−1)/C ≤ |S|dlogb ne+ |S∗|/C,

implying that |S∗| ≤ |S|dlogb ne/(1− 1/C).

Note that since (x − 1)(1 − logb x) < x ln(b/x)
ln b < b/ln b for all x ≤ b, we indeed have f(b) =

O(b/ log b). 2

References

[1] P. K. Agarwal, M. van Kreveld, and S. Suri. Label placement by maximum independent set in rectangles.

Comput. Geom. Theory Appl., 11:209–218, 1998.

[2] P. Berman, B. DasGupta, S. Muthukrishnan, and S. Ramaswami. Efficient approximation algorithms for

tiling and packing problems with rectangles. J. Algorithms, 41:443–470, 2001.

[3] T. M. Chan. Polynomial-time approximation schemes for packing and piercing fat objects. J. Algorithms,

46:178–189, 2003.

[4] D. Eppstein and J. Erickson. Iterated nearest neighbors and finding minimal polytopes. Discrete Comput.

Geom., 11:321–350, 1994.

[5] T. Erlebach, K. Jansen, and E. Seidel. Polynomial-time approximation schemes for geometric graphs. In

Proc. 12th ACM-SIAM Sympos. Discrete Algorithms, pages 671–679, 2001.

[6] R. J. Fowler, M. S. Paterson, and S. L. Tanimoto. Optimal packing and covering in the plane are

NP-complete. Inform. Process. Lett., 12:133–137, 1981.

[7] D. S. Hochbaum and W. Maass. Approximation schemes for covering and packing problems in image

processing and VLSI. J. ACM, 32:130–136, 1985.

[8] H. Imai and T. Asano. Finding the connected components and a maximum clique of an intersection graph

of rectangles in the plane. J. Algorithms, 4:310–323, 1983.

[9] S. Khanna, S. Muthukrishnan, and M. Paterson. On approximating rectangle tiling and packing. In Proc.

9th ACM-SIAM Sympos. Discrete Algorithms, pages 384–393, 1998.

[10] F. Nielsen. Fast stabbing of boxes in high dimensions. Theoret. Comput. Sci., 246:53–72, 2000.

6

