
Selection and Sorting in the “Restore” Model

Timothy M. Chan∗ J. Ian Munro∗ Venkatesh Raman†

Abstract
We consider the classical selection and sorting problems in
a model where the initial permutation of the input has to
be restored after completing the computation. While the
requirement of the restoration is stringent compared to the
classical versions of the problems, this model is more relaxed
than a read-only memory where the input elements are not
allowed to be moved within the input array.

We first show that for a sequence of n integers, selection
(finding the median or more generally the k-th smallest
element for a given k) can be done in O(n) time using
O(lgn) words1 of extra space in this model. In contrast,
no linear-time selection algorithm is known which uses
polylogarithmic space in the read-only memory model.

For sorting n integers in this model, we first present an
O(n lgn)-time algorithm using O(lgn) words of extra space.
When the universe size U is polynomial in n, we give a faster
O(n)-time algorithm (analogous to radix sort) which uses
O(nε) words of extra space for an arbitrarily small constant
ε > 0. More generally, we show how to match the time
bound of any word-RAM integer-sorting algorithms using
O(nε) words of extra space. In sharp contrast, there is an
Ω(n2/S)-time lower bound for integer sorting using O(S)
bits of space in the read-only memory model. Extension of
our results to arbitrary input types beyond integers is not
possible: for “indivisible” input elements, we can prove the
same Ω(n2/S) lower bound for sorting in our model.

En route, we develop linear-time in-place algorithms to

extract leading bits of the input array and to compress and

decompress strings with low entropy; these techniques may

be of independent interest.

1 Introduction

This paper is concerned with space-efficient algorithms
that require little (sublinear) extra space besides the
input array. Two classes of such algorithms have
received considerable attention in the past:

• In-place algorithms may use the input array as
working space and may modify the array during
computation. The output may be put in the same
array by the end of the computation, or sent to
an output stream. The prototypical example of
an in-place algorithm is the classic heapsort, which

∗Cheriton School of Computer Science, University of Waterloo,

Waterloo, Ontario N2L 3G1, Canada, {tmchan,imunro}@uwater-

loo.ca
†The Institute of Mathematical Sciences, Chennai 600 113,

India, vraman@imsc.res.in
1We use lg to denote logarithm; the base is 2 unless specified

otherwise.

requires just O(1) words of extra space.2 More
sophisticated in-place sorting algorithms have been
explored in the literature. For example, there is an
in-place version of radix sort which can sort integers
in the range [U] = {0, . . . , U − 1} for U = nO(1)

in linear time with O(1) words of extra space [18];
and there is an in-place version of any word-RAM
integer-sorting algorithm [1, 21, 22] which uses O(1)
words of extra space [18]. The standard linear-time
algorithms for the classical selection problem, i.e.,
finding the median or the k-th smallest element for
a given k, can also be made in-place with O(1) words
of extra space [24].

Many in-place algorithms have been devised in dif-
ferent areas such as stringology (e.g., see [17]) and
computational geometry (e.g., see [7, 10]). Often
low (polylogarithmic) space usage can be guaranteed
without much increase in the running time. How-
ever, one main disadvantage is that typically at the
end of the computation, the original input permuta-
tion is lost—this is problematic in certain applica-
tions.

• In the read-only memory model, algorithms are
not allowed to modify the input array at all and
may make changes only in the extra storage area.
(Single- or multiple-pass streaming algorithms fit in
this model, although we allow more generally for
random access to the read-only input array.) The
selection problem has been studied in this model
since the early work of Munro and Paterson [25] and
Frederickson [19]; many further results were found
(see Table 1), but none of the existing deterministic
or randomized selection algorithms achieves linear
time when polylogarithmic space is desired.

Read-only-memory algorithms have recently gained
more attention in areas such as computational geom-
etry (e.g., see [3, 9]). Historically, read-only mem-
ory is in fact one of the more common settings stud-
ied from the perspective of time–space tradeoff lower

2A stricter definition of in-place algorithms explicitly requires

that the amount of extra space is O(1) words (and that the array
can only store a permutation of the input elements at any time),

but we will work with a looser definition (e.g., allowing for possibly
polylogarithmic extra space) in this paper.

O(n lgs n+ n lg∗ s) for s ≥ lg2 n [25, 19]
O(n) for s ≥ n/ lg n [15]
O(sn1+1/s lg n) for s ≤ lg n [29]
O(n lg lgs n) randomized for any s [26, 8]
O(n lgs U) for any s [11]
O(n lg ndlgs lgUe) for any s [11]

Table 1: Time bounds of selection algorithms in read-
only memory using O(s) words of space. All bounds are
deterministic unless indicated otherwise; the last two
are for integer input.

bounds. Work of Borodin et al. in the early 1980s
[5, 6], and a subsequent improvement by Beame [4],
investigated the sorting problem in read-only mem-
ory; the latter proved that any sorting algorithm us-
ing O(S) bits of extra space requires Ω(n2/S) time,
even when the input consists of integers in a universe
of size U = O(n). (This bound was matched by a
comparison-based sorting algorithm of Pagter and
Rauhe [28] for all lg n ≤ S ≤ n/ lg n; the range was
further extended by the integer sorting algorithm of
Pagh and Pagter [27].) Unfortunately, this lower
bound indicates that the read-only memory model
may incur a far greater loss of efficiency—for ex-
ample, with polylogarithmic or nε space, sorting re-
quires near-quadratic time!

Still, efficient read-only-memory algorithms in gen-
eral are desirable for at least two reasons: first, cer-
tain applications may require the input to not be
destroyed; second, the input may actually be stored
in a medium that is physically read-only.

In this paper, we investigate a natural relaxation
(and, we feel, a fundamental variant) of the read-only
memory model. In this new model, we allow algorithms
to modify the input array during the computation, but
require that the original input permutation be restored
by the end of the computation (thus retaining at least
one of the advantages of the read-only memory model,
namely, that the input is not destroyed). We call this
the Restore model. Note that the naive solution
of copying the entire array is inadequate, as we are
interested in algorithms with sublinear extra space.

As one motivation, algorithms in the Restore
model may potentially be useful in the design of in-
place algorithms, when sometimes one encounters sub-
problems which have to be solved by subroutines. It
is important that these subroutines leave the array in
its original state by the time they finish, so that com-
putation can be properly resumed. Such subroutines
may even be run in succession. (For one concrete exam-
ple, Crochemore et al. [14] recently designed an in-place

algorithm for the inverse Burrows-Wheeler transform
which required selection as a subroutine; they invoked
a selection algorithm in read-only memory, but a selec-
tion algorithm in the Restore model would be good
enough for such purposes.)

Despite the naturalness of the model, it is unclear
if one can actually get better results in the Restore
model for standard comparison-based problems. Intu-
itively, at any moment during the computation, the ar-
ray has retained the same amount of information, i.e.,
the same entropy, as the original input, in order for
restoration to be possible; but this constraint appears
very restrictive. Formally, we prove in Section 6 that
for the sorting problem, the same Ω(n2/S)-time lower
bound in read-only memory carries over in the Restore
model, if the input elements are “indivisible” or “un-
splittable”, i.e., each array entry can only store an orig-
inal element of the input set. Our proof is based on a
simple encoding or Kolmogorov complexity argument.

However, for integer input in [U] without the indi-
visibility assumption, we show that significantly better
algorithms are possible in the Restore model: specifi-
cally, in Sections 2–5, we give

1. a selection algorithm that runs in O(n) time and
uses O(lg n) words of extra space;

2. a sorting algorithm that runs in O(n lg n) time and
uses O(lg n) words of extra space;

3. a sorting algorithm that runs in O(ndlgU/ lg ne)
time and uses O(nε) words of extra space for an
arbitrarily small constant ε > 0—the running time
thus matches that of radix sort;

4. a sorting algorithm that runs in O(ram-sort(n))
time and uses O(nε) words of extra space, where
ram-sort(n) denotes the time bound for integer
sorting on the standard word RAM—current best
results have

• ram-sort(n) = O(n
√

lg lg n) with randomiza-
tion, by Han and Thorup [22];

• ram-sort(n) = O(n lg lg n) without randomiza-
tion, by Han [21];

• ram-sort(n) = O(n) with randomization in the
case when lgU ≥ (lg n)2+Ω(1), by Andersson et
al. [1].

What matters is not so much that the elements are in-
tegers but that they have bounded precision (a realistic
assumption), since for comparison-based problems, we
can map floating point numbers to integers by concate-
nating the exponents and mantissa. We assume a stan-
dard word RAM where the word size w is equal to lgU

(so that an input element fits in a word), with U ≥ n,
and standard (arithmetic, shift, and bitwise-logical) op-
erations on words take constant time.

Our sorting algorithms send the elements in sorted
order to an output stream, as do previous sorting algo-
rithms in the read-only memory model. They immedi-
ately imply similar results for the element distinctness
problem, i.e., deciding whether all elements are distinct,
if one prefers a problem where the output interface is
not a concern. In fact, we can do slightly better for this
particular problem: in the Restore model, we give

5. an algorithm for element distinctness that runs in
O(n) time with randomization and uses O(nε) words
of extra space.

Prior related work. Our work is inspired by an
open question from a recent talk by Roberto Grossi [20],
who asked why linear-time selection has to be “destruc-
tive” to the input. We have since come across at least
two papers that specifically looked at problems in the
Restore model:

• Prior to Grossi’s talk, Claude, Nicholson and
Seco [13] had already defined the term non-
destructive to refer to algorithms in the Restore
model. They studied the wavelet tree construction
problem and gave a non-destructive algorithm; how-
ever, the amount of extra space used is close to lin-
ear, on top of the space to store the output wavelet
tree. Nonetheless, some of the issues encountered in
computing wavelet trees turn out be relevant to our
algorithms, as we will see later. As motivation for
non-destructiveness, Claude et al. also mentioned an
application to “a library for succinct data structures
such as LIBCDS3 where the user might want to fur-
ther process the sequence used to build the wavelet
tree”. A predecessor to Claude et al.’s paper is Tis-
chler’s [30]; he mentioned a similar concept of “re-
versibility”, and observed that with his method it
is possible to transform a wavelet tree back to the
original input string space-efficiently.

• Much earlier, in 1994, Katajainen and Pasanen [23]
had already proposed the selection problem in the
Restore model (which they explicitly called the
restoring selection problem) en route to their in-
place, stable, adaptive, multiset sorting algorithm.
They gave an O(n)-time algorithm using O(n) bits
for the selection problem in this model, although an
O(n)-time algorithm using O(n) bits is now known
in the less powerful read-only memory model [15].
Their paper left “as an open problem whether there

3http://libcds.recoded.cl

exists a minimum space algorithm for restoring
selection”.

Outline of our approach. The techniques behind
our algorithms are not complicated but we believe are
interesting. The first idea is to use the leading bit of
each input number to partition the array and then apply
recursion. We observe that the standard partitioning
algorithm from quicksort [12] is in fact reversible, which
allows us to restore the input after recursion. The
partitioning based on leading bits may not be balanced,
however. Our key insight is that in the unbalanced
case, the input would not be uniformly distributed
and would thus have less entropy and be compressible.
Compression can save a significant number of bits of
space in the input array—enough for us to switch to
a direct read-only-memory algorithm. We can then
decompress to restore the input.4

To carry out this plan, we need the following
subroutines, which may be of independent interest:

• a linear-time in-place algorithm for extracting lead-
ing bits of the input array (naively invoking a
known in-place permutation result [16] would re-
quire O(n lg n) time);

• a linear-time in-place algorithm for compressing
and decompressing a string (the trick is simple, but
we are unaware of work on this subproblem in the
in-place algorithms literature).

In addition, in order to achieve our best results for the
sorting problem, we need to perform a multi-way rather
than binary partitioning, which creates more challenges.
We hope that our ideas will find further applications.

2 Selection and Sorting in O(n lgU) Time

In this and the next three sections, we will assume
that the input is a sequence of n integers in [U] where
U is a power of 2. We begin this section by giving
a simple, easy-to-implement O(n lgU)-time algorithm
for selection and sorting in the Restore model using
O(lg n) words of space. For selection, the result is
not new, since an O(n lgU)-time algorithm using O(1)
words is already known in read-only memory [11], but
we show how to refine our approach to obtain better
results later.

4At least one prior paper by Franceschini et al. [18] on in-

place integer sorting has also used the idea of compression and

decompression, by exploiting the fact that the entropy is decreased
after the array is sorted; however, our situation is very different
from the in-place setting, since we need the array to preserve

entropy at all times, to enable restoration.

Theorem 2.1. Given a sequence of n integers in [U]
and given k, we can find the k-th smallest element of
the sequence in O(n lgU) time using O(lg n) words of
extra space in the Restore model. Furthermore, we
can output the elements in sorted order in O(n lgU)
time using O(lg n) words of extra space in the Restore
model.

Proof. The following selection algorithm achieves the
claimed bounds.

Step 1 Our first step is to partition the given array into
two by pivoting on U/2, i.e., we move the elements
with the most significant bit 0 to the first part and
those with the most significant bit 1 to the second
part. For this, we adopt the textbook partitioning
algorithm used by quicksort: Keep two pointers at
either end of the array. Scan with each pointer
until we find an element that should go to the other
half. Swap the two elements pointed to by the two
pointers, until we come to the middle of the array.
When we swap, we move all but the most significant
bits of each element. The most significant bits of
the elements remain in their original positions to
help with the restoration process. (Note that the
partitioning is not required to be “stable”.)

Step 2 Depending on the size of each part, recursively
find the appropriately ranked element in the por-
tion that contains the k-th smallest element and
restore the part to its permutation (before the re-
cursive step).

Step 3 By using the most significant bits, reverse the
moves made in Step 1, to restore to the original
array. The reversal can be done by re-running the
same partitioning algorithm.

For the sorting problem, we modify Step 2 of the
algorithm to use recursion on both parts of the array
instead.

Of course the position of the most significant bit
advances as we descend during the recursion. When
outputting an element, we should replace the bits to the
left of the most significant bit position with the correct
bits, which can be determined from the current branch
of the recursion tree.

It is clear that the algorithm takes O(n lgU) time as
the universe size U comes down by a factor of two in each
recursive call. The recursion stack needs O(lgU lg n)
bits to remember the positions of the subarrays. 2

3 Selection in Linear Time and Sorting in
O(n lg n) Time

Note that in the algorithm of Section 2, if the pivot at
every step is close to the median of the sequence, which

is what we would expect in a random instance, then
the number of elements would decrease by a constant
factor in each recursive call, and we could then improve
the time bound for selection to O(n) and sorting to
O(n lg n). Unfortunately, we do not know how to
pivot around a value other than U/2 efficiently in the
Restore model.

However, when our pivot U/2 is far from the median
element, we observe that the size of the parts are
unbalanced, i.e., we have a lot more elements with
leading bit 0 than with leading bit 1 or vice versa. In
this case, the leading bits have less entropy, hence can
be compressed to release some extra (close to O(n)) bits
of space which can be used to terminate the recursion
by switching to a known read-only memory algorithm.

Before compression, we first need to extract the
most significant bits of the elements into a prefix of the
array. This is handled by the following lemma (for now,
we only need the special case of ` = 1).

Lemma 3.1. (In-place extraction/un-extraction
of the leading bits) Given a sequence of n integers
in [2w] and a number ` ≤ w, we can extract the ` most
significant bits of each of them, put them in a prefix of
the array, and put the remaining bits in a suffix of the
array, while preserving the given order, in O(n) time
using O(` lg n) words of space. The extraction can be
undone within the same bounds.

Proof. Divide the sequence into blocks of aw elements
each for some integer parameter a. Do the following
for each block: Extract the ` most significant bits of
each element in the block to the extra storage area,
which requires aw` bits, i.e., a` words. Now, move
these extracted most significant bits in that order to
the beginning of the block and shift the remaining bits
of each element to the end of the block; this can easily
be done in linear time.

At the end of this step, we have a sequence of the
form A1, B1, A2, B2, . . . where each Ai occupies a` words
and each Bi occupies a(w − `) words. We want to
permute the array to get A1, A2, . . . , B1, B2, . . . We
can apply a general in-place permutation algorithm
by Fich et al. [16] to solve this subproblem. This
algorithm assumes oracles for both the permutation
and its inverse, which are easily implementable in our
case. It requires just O(1) words of space; however, its
running time is O(n lg n).

To speed up the process, the trick is to pick a
nonconstant a and view the sequence as a sequence
of segments of a words each. The permutation we
seek is a permutation of the segments. We apply Fich
et al.’s algorithm to the n/a segments, which requires
O((n/a) lg(n/a)) time, which is O(n) by choosing a =

dlg ne. A move in this situation costs O(a) as a
move involves moving a words. But as the number of
moves in Fich et al.’s algorithm is linear in the number
of segments n/a (their algorithm uses the minimum
number of moves since it decomposes the permutation
into disjoint cycles), the overall cost remains O(n).

Un-extraction can be done similarly, by reversing
all the steps.

We remark that this bit extraction problem also
arose in a previous work on space-efficient construction
of wavelet trees by Claude et al. [13]; they also used Fich
et al.’s algorithm but did not obtain a purely in-place,
linear-time solution to our subproblem. 2

Next, we describe how to do the compression step
in a space-efficient manner:

Lemma 3.2. (In-place compression/decompres-
sion) Given a string s = s1s2 · · · sn with si ∈ [2`]
and a suffix code5 for the alphabet [2`], where the
maximum character code length is L with ` ≤ L ≤ w,
we can compute the encoding of s in O(n + 2L) time
using O(2L) words of extra space, provided that the
code compresses s (i.e., the encoding of s is not longer
than s). Decoding can also be done within the same
bounds.

Proof. Note that a linear-time encoding algorithm is
straightforward, since we can scan the string from left
to right and generate the code of each character by
table lookup. However, this naive algorithm does not
guarantee constant space, because the code is assumed
to compress s, but not necessarily compress every prefix
of s.

If we make an extra assumption that the encoding
of s saves a linear number of bits, one possible approach
would be to use recursion (divide into two halves,
recursively generate the code of the more compressible
half, then directly compute the code of the remaining
half using the linear number of bits saved). We describe
a different, simple encoding algorithm that does not
require any extra assumption:

Step (i) Let ci be ` minus the code length of si. Let
Ci = c1 + · · · + ci. First compute the index i that
minimizes Ci; this can be done by an obvious linear
scan with O(1) space.

Step (ii) Next run the naive algorithm to gener-
ate the code of the cyclically shifted string

5Suffix code is similar to prefix code. The code of a string is
the concatenation of the code of its characters. To guarantee a

unique decoding, we require that no character’s code is a suffix of
another character’s code.

si+1 · · · sns1 · · · si, starting at position i + 1 of the
array.

Step (iii) Finally cyclically shift the encoded string to
lie in a prefix of the array.

To see why the naive algorithm is applicable to the
cyclically shifted string in Step (ii), we note that for
every j > i, the code compresses si+1 · · · sj since the
number of bits saved is Cj − Ci ≥ 0, and moreover for
every j ≤ i, the code compresses si+1 · · · sns1 · · · sj since
the number of bits saved is Cn − Ci + Cj ≥ Cn ≥ 0.

For the decoding algorithm, we assume that we are
given the index i and a pointer to the end of the encoded
string, which take O(1) words of space. We just reverse
all the steps of the encoding algorithm. To reverse
the execution of the naive algorithm in Step (ii), note
that from the last L bits of the encoded string, we can
determine which character in [2`] maps to a suffix of the
encoded string by table lookup (the precomputation of
the table takes O(2L) time); we can then update the
end pointer of the encoded string, and repeat. 2

With these two lemmas, we can now obtain an
O(n)-time selection algorithm and an O(n lg n)-time
sorting algorithm in the Restore model:

Theorem 3.1. Given a sequence of n integers in [U]
and given k, we can find the k-th smallest element of the
sequence in O(n) time using O(lg n) words of extra space
in the Restore model. Furthermore, we can output the
elements in sorted order in O(n lg n) time using O(lg n)
words of extra space in the Restore model.

Proof. Let δ > 0 be a sufficiently small constant. We
modify the algorithm in Theorem 2.1. In Step 2, if
the size of one of the two parts is more than (1 − δ)n,
we switch to the following method instead of recursion:
We first extract and move the most significant bits
of the elements to a prefix of the array in O(n) time
using O(lg n) words of space by Lemma 3.1. (Note
that at an intermediate step of the recursion, the “most
significant bit” may actually refer to some intermediate
bit position; we can rearrange the bits of each element to
make this position the most significant before invoking
the lemma.) Say the number of 0s is more than (1−δ)n
and the number of 1s is at most δn. In this case, we
compress the string of the most significant bits in O(n)
time by Lemma 3.2, for example, by dividing into blocks
of 2 and using a suffix code with ` = 2 and L = 3 which
maps 00 to 0 (shortening by one bit) and maps y to
y1 (lengthening by one bit) for each y ∈ {01, 10, 11}.
Let n00 be the number of occurrences of 00; then
n00 ≥ (1/2−δ)n. With this suffix code, the net decrease

in the number of bits is at least n00 − δn ≥ αn for
α = 1/2− 2δ.

With the extra space saved by the compression, we
can now solve the problem directly by invoking a known
selection algorithm in read-only memory with O(n) time
and αn bits of space [15], or a known sorting algorithm
in read-only memory with O(n lg n) time and αn bits
of space [19]. (Pagter and Rauhe [28] (see also [2])
have given a more complicated sorting algorithm which
improves space by a logarithmic factor to O(n/ lg n)
bits, but we do not need this improvement here.) Note
that after bit extraction, accessing an array element
may require some extra overhead in address calculations
but still takes constant time. (Also note that if the
“most significant bit” is actually an intermediate bit
position, an access to an element by the read-only
memory algorithm should retrieve only the bits to the
right of that position.) Finally, we decompress the
string by Lemma 3.2, and undo the bit extraction by
Lemma 3.1.

Since recursion is done only when both parts are of
size at most (1− δ)n, the number of elements drops by
a constant fraction of n, resulting in a recursion depth
of O(lg n). The linear time bound for selection follows
from a geometric series. 2

4 Matching Radix Sort

In the case of integers, there are sorting algorithms with
running time better than O(n lg n). For example, radix
sort runs in linear time for U = nO(1). We will show that
similar algorithms are possible in the Restore model.

We begin with a faster version of the O(n lgU)-time
algorithm in Section 2. The idea is to generalize binary
partitioning to b-way partitioning.

Theorem 4.1. Given a sequence of n integers in [U]
and a parameter b ≤ min{n,U}, we can output
the elements in sorted order in O(n lgb U) time us-
ing O(bO(1) lg n) words of extra space in the Restore
model.

Proof. We may assume that b is a power of 2. Fur-
thermore, we may assume that n ≥ b3, because oth-
erwise we can directly run radix sort [12], which takes
O(n lgn U) ≤ O(n lgb U) time (by the n ≥ b condition)
with O(b3) words of space.

We generalize Step 1 of the algorithm in Theo-
rem 2.1 to a b-way partitioning, based on the lg b most
significant bits of the integers. We want to move el-
ements so that at the end of the partitioning step,
the i-th part of the array contains all elements with
their lg b most significant bits representing the integer
i ∈ [b]. When we do the partitioning, we move only
the lgU − lg b least significant bits of each element. We

initially find the sizes of the b parts by a linear scan
and virtually divide the array into b parts. We main-
tain a table of b pointers p1, . . . , pb, where pi points to
an element A[pi] currently residing in the i-th part that
needs to be moved to another part (as indicated by the
element’s lg b most significant bits). Pointers always
advance from left to right and become null when their
parts are exhausted. At each round, we begin with the
non-null pointer pi with the smallest i (it is important
to keep each step deterministic, so that we know how to
reverse the partitioning algorithm later). If A[pi] needs
to be moved to the j-th part, we move A[pi] to A[pj],
advance pointer pj , and repeatedly move A[pj], until we
return to A[pi] to complete a cycle. We then advance
pointer pi and proceed with the next round. The to-
tal cost of the partitioning step is O(n) (setting up the
table of pointers requires O(b) time, but n ≥ b).

In Step 2, we recursively sort the b parts. For a part
of size less than b, we technically cannot use recursion,
but we can directly sort in O(b lg b) time with O(b)
words of space. The total extra cost O(b2 lg b) can be
absorbed by O(n), since n ≥ b3.

In Step 3, by using the lg b most significant bits,
we can re-simulate the b-way partitioning algorithm
and reverse the moves made, following the same cycle
decomposition.

The recursion depth is reduced to O(lgb U), so the
total running time is O(n lgb U) and the total space in
bits is O(bO(1) lgU + (lgU/ lg b) · bO(1) lg n). 2

By setting b = nΘ(ε), this theorem implies an
algorithm with O(ndlgU/ lg ne) time and O(nε) words
of space in the Restore model. The running time
matches that of radix sort (with base n), and is linear
when U = nO(1). The algorithm is simple enough
for implementation (no bit extraction or compression
is necessary).

Alternatively, by setting b = lgΘ(ε) n, the the-
orem implies an algorithm for U = nO(1) with
O(n lg n/ lg lg n) time and O(lg1+ε n) words of space in
the Restore model.

5 Matching Any RAM Sorting Algorithm

We now show that o(n lg n)-time sorting algorithms in
the Restore model are theoretically possible for any
universe size U . In fact, we can match the time bound
of any word-RAM integer sorting algorithm if we allow
O(nε) words of space.

The plan is to reduce the O(n lgb U) running time
in Section 4 to near O(n lgb n), in the same manner
that we have reduced the O(n lgU) running time in
Section 2 to O(n lg n) in Section 3, by using extraction
and compression of the leading bits, coupled with b-way

partitioning.
Below, we assume the function ram-sort(·) satis-

fies
∑

i ram-sort(ni) ≤ ram-sort(
∑

i ni).

Theorem 5.1. Given a sequence of n integers in
[U], a parameter b ≤ n, and any constant ε >
0, we can output the elements in sorted order in
O(n lgb n + ram-sort(n)) time using O(bO(1) lg n +

min{nε, lgO(ε) U}) words of extra space in the Re-
store model. Furthermore, we can decide whether the
elements are distinct in O(n lgb n) expected time us-
ing O(bO(1) lg n) words of extra space in the Restore
model.

Proof. We may assume that b and lg b are powers of
2. We generalize Step 1 and Step 3 of the algorithm
in Theorem 2.1 to a b-way partitioning, in exactly the
same way described in the proof of Theorem 4.1.

In Step 2, we modify the approach in the proof of
Theorem 3.1: We first extract the lg b most significant
bits of each integer in O(n) time using O(lg b lg n) words
of space by Lemma 3.1. We then compress the string
of these most significant bits by Lemma 3.2. For each
part with size at most 2tn/b for some parameter t, we
recursively sort the elements. (For a part of size ni less
than b, we technically cannot use recursion, but we can
directly sort in O(ram-sort(ni)) time with O(b) words
of space.) For each part with size more than 2tn/b, we
solve the problem directly by invoking a known read-
only-memory algorithm with the extra space saved by
compression. Finally, we decompress the string and
undo the bit extraction.

For the compression, we can for example use the
following suffix code6 with ` = lg b and L = lg b+1: Let
ni denote the size of the i-th part. First observe that
there are at most b/2t parts of size more than 2tn/b,
and at least b/2 parts of size at most 2n/b. Thus,
it is possible to form disjoint groups of 2t−1 indices
each, such that each bad index i with ni > 2tn/b is
grouped with 2t−1 − 1 good indices j with nj ≤ 2n/b.
We permute the alphabet [b] so that for each group,
the bad index has binary representation of the form
0t−1z and the good indices have binary representations
of the form yz with |y| = t − 1 and y 6= 0t−1 for a
common string z. We then map 0t−1z to 0z (shortening
by t−2 bits) and map yz to y1z (lengthening by one bit).
With this suffix code, the net decrease in the number
of bits is at least

∑
i bad[(t− 2)ni− (2t−1− 1)(2n/b)] ≥∑

i bad[(t − 2)ni − ni] ≥ Ω(lg b)
∑

i bad ni by setting
t = (lg b)/2.

6We can also use Huffman coding, which produces an optimal

prefix/suffix code, but the argument in this paragraph is still
needed to bound the number of bits saved.

For each bad index i, the number of bits saved
by the compression is thus at least Ω(ni lg b). We
invoke a sorting algorithm in read-only memory, as
noted in the appendix, with O(T + ram-sort(ni))
time and O((n2

i /T) lg ni + nεi lgU) bits of space for any
given T . (Pagh and Pagter [27] have given a more
complicated algorithm which improves space by almost
a logarithmic factor to O((n2

i /T) lg(T/ni) ni + nεi lgU)
bits,7 but we do not need this improvement here.)
We can set T = Θ(ni lgb ni) so that the first term
of the space bound matches O(ni lg b). The second
term O(nεi lgU) is absorbed by the first, unless n1−ε

i ≤
lgU , in which case the second term is bounded by
O(min{nε, lgO(ε) U} · lgU).

For the element distinctness problem, we invoke
instead an algorithm in read-only memory based on
hashing, as noted in the appendix, with O(T) expected
time and O((n2

i /T) lg ni + lgU) bits of space.
Since recursion is done only for parts of size at most

2tn/b = n/
√
b, the recursion depth is O(lgb n). 2

By setting b = nΘ(ε), this theorem implies a sorting
algorithm with O(ram-sort(n)) time and O(nε) words
of space, and an algorithm for element distinctness with
O(n) expected time and O(nε) words of space, in the
Restore model. For sorting, for a specific bound
such as ram-sort(n) = O(n

√
lg lg n) by Han and

Thorup [22], we can set b = nΘ(ε/
√

lg lg n) instead and

obtain a slightly better expression O(nε/
√

lg lg n +lgε U)
for the space usage.

Alternatively, by setting b = lgΘ(ε) n, the theorem
implies an algorithm for any U with O(n lg n/ lg lg n)
time and O(lg1+ε n + lgε U) words of space in the
Restore model.

6 Lower Bound for Indivisible Elements

We finally show that if the elements are indivisible,
i.e., if the input array must be a permutation of the
input sequence at any point of time, then the Restore
model is not any more powerful than the read-only
memory model for the sorting problem, i.e., there is
a lower bound of Ω(n2/S) time for sorting, matching
the best known lower bound in read-only memory [4].
This justifies the need to manipulate bits of the input
integers in all our algorithms in the Restore model.

Since the Restore model essentially forces the
array to preserve entropy at all times, it is natural to
consider an encoding or Kolmogorov complexity style
argument, which we will use in the following lower
bound proof.

7Here, lg(j) denotes the slow-growing j-th iterated logarithm
function.

Theorem 6.1. Any algorithm that, given a sequence of
n indivisible elements, outputs the elements in sorted
order requires Ω(n2/S) worst-case time in the Restore
model, where S ≥ lg n is the number of bits of extra
space available.

Proof. Suppose there is an algorithm that uses fewer
than n2/(cS) steps on all input, where c is a sufficiently
large constant. We describe a way to encode an
arbitrary sequence of n integers in [U] (with U =
Ω(n)) in less than n lgU bits, which would lead to a
contradiction.

Consider the execution of the algorithm on the given
integer sequence. Divide [U] into dn/(2cS)e intervals
of length Ω(U · cS/n). Divide the execution of the
algorithm into phases where in the i-th phase, the
elements ouputted by the algorithm are from the i-
th interval. Then some phase i must use fewer than
(n2/(cS))/dn/(2cS)e ≤ n/2 steps.

Let I be the interval for that phase i. We encode the
given sequence as follows: First record the index i and
the state σ of the algorithm at the beginning of phase i,
in O(S) bits. Let x1, . . . , xn be the sequence of elements
in the order they are first accessed when starting at
state σ. Since all elements in I are ouputted (and thus
accessed) during the first n/2 steps, all elements in I
are from the first half of this sequence. In other words,
xn/2+1, . . . , xn ∈ [U] − I. Record x1, . . . , xn/2 as they
are, in (n/2) lgU bits, and then record xn/2+1, . . . , xn,

in dlg(|[U] − I|n/2)e| bits. Since the length of I is
|I| = Ω(U · cS/n), the total number of bits in the
encoding is

(n/2) lgU + (n/2) lg(U − |I|) +O(S)

= n lgU + (n/2) lg(1− |I|/U) +O(S)

≤ n lgU − Ω(n|I|/U) +O(S)

≤ n lgU − Ω(cS) +O(S) < n lgU

for a sufficiently large constant c.
From this encoding, we can recover the original

sequence as follows: simulate the algorithm from state
σ on an array of “unknowns”. Whenever the algorithm
accesses an element whose value is currently unknown,
fill in its value by retrieving the next element from the
sequence x1, . . . , xn. (Note that the argument holds
even if the algorithm is allowed to move elements in
the array.) By definition of the Restore model, the
content of the array at the end of the execution gives us
exactly the input in its original permutation. 2

Our proof extends to randomized algorithms: by
Yao’s principle, it suffices to consider a random, uni-
formly distributed input, but such an input is incom-
pressible with high probability.

Our proof appears simpler than previous lower
bound proofs for sorting in read-only memory [4, 5, 6],
but the results are not directly comparable. For exam-
ple, Beame’s proof [4] holds without any indivisibility
restriction and for the weaker problem of outputting the
unique elements in arbitrary order (for which our proof
would not work). Our basic observation is that for most
input instances, a large number of steps must be made
before an algorithm can encounter all elements lying in
an interval of a certain length. This type of observation
has appeared in lower bound proofs before (e.g., see [8,
Lemma 4.1]), and it was typically shown via a counting
or probabilistic argument. Our above proof essentially
recasts this as an encoding argument.

7 Concluding Remarks

We conjecture that for indivisible elements, many ex-
isting lower bounds in read-only memory should carry
over to the Restore model. For example, for the
Ω(n lg lgs n) randomized lower bound for selection [8],
this might require rethinking the various probabilistic
arguments used in that proof as encoding arguments.

Another open question is whether the O(nε) space
bound of our integer sorting algorithms from Sections
4 and 5 could be reduced to polylogarithmic, or even
O(1) words (as in-place algorithms are possible in the
standard RAM model [18]), or if some lower bound
could be proved to rule out this possibility.

We hope that our work will inspire further studies
in the Restore model. For example, we are able
to extend our approach to the problem of counting
inversions in a sequence. This requires additional
effort to ensure the partitioning step be done stably;
details will be forthcoming. We can also investigate
applications to problems from other areas, such as
computational geometry, in the Restore model.

References

[1] A. Andersson, T. Hagerup, S. Nilsson and R. Raman,
‘Sorting in linear time?’, Journal of Computer and
System Sciences, 57(1):74–93, 1998.

[2] T. Asano, A. Elmasry and J. Katajainen, ‘Priority
queues and sorting for read-only data’, in Proc. 10th
International Conference on Theory and Applications
of Models of Computation (TAMC 2013), 32–41.

[3] T. Asano, W. Mulzer, G. Rote and Y. Wang,
‘Constant-work-space algorithms for geometric prob-
lems’, Journal of Computational Geometry, 2(1):46–68,
2011.

[4] P. Beame, ‘A general sequential time-space tradeoff for
finding unique elements’, SIAM Journal on Computing,
20(2):270–277, 1991.

[5] A. Borodin and S. A. Cook, ‘A time-space tradeoff for
sorting on a general sequential model of computation’,
SIAM Journal on Computing, 11(2):287–297, 1982.

[6] A. Borodin, M. J. Fischer, D. G. Kirkpatrick, N. A.
Lynch and M. Tompa, ‘A time-space tradeoff for sort-
ing on non-oblivious machines, Journal of Computer
and System Sciences, 22(3):351–364, 1981.

[7] H. Brönnimann, T. M. Chan and E. Y. Chen, ‘Towards
in-place geometric algorithms and data structures’, in
Proc. 20th ACM Symposium on Computational Geom-
etry (SoCG 2004), 239–246.

[8] T. M. Chan, ‘Comparison-based time-space lower
bounds for selection’, ACM Transactions on Algo-
rithms, 6(2):26, 2010.

[9] T. M. Chan and E. Y. Chen, ‘Multi-pass geometric
algorithms’, Discrete and Computational Geometry,
37(1):79–102, 2007.

[10] T. M. Chan and E. Y. Chen, ‘Optimal in-place and
cache-oblivious algorithms for 3-d convex hulls and
2-d segment intersection’, Computational Geometry:
Theory and Applications, 43(8):636–646, 2010.

[11] T. M. Chan, J. I. Munro and V. Raman, ‘Faster, space-
efficient selection algorithms in read-only memory for
integers’, to appear in Proc. 24th International Sympo-
sium on Algorithms and Computation (ISAAC 2013).

[12] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C.
Stein, ‘Introduction to Algorithms’, MIT Press, 3rd
ed., 2009.

[13] F. Claude, P. K. Nicholson and D. Seco, ‘Space efficient
wavelet tree construction’, in Proc. 18th International
Symposium on String Processing and Information Re-
trieval (SPIRE 2011), 185–196.

[14] M. Crochemore, R. Grossi, J. Kärkkäinen and G.
M. Landau, ‘A constant-space comparison-based algo-
rithm for computing the Burrows-Wheeler transform’,
in Proc. 24th Symposium on Combinatorial Pattern
Matching (CPM 2013), 74–82.

[15] A. Elmasry, D. D. Juhl, J. Katajainen and S. Rao
Satti, ‘Selection from read-only memory with limited
work space’, in Proc. 17th International Conference on
Computing and Combinatorics (COCOON 2013), 147–
157.

[16] F. E. Fich, J. I. Munro and P. V. Poblete, ‘Permuting
in place’, SIAM Journal on Computing, 24(2):266–278,
1995.

[17] G. Franceschini and S. Muthukrishnan, ‘In-place suffix
sorting’, in Proc. 34th International Colloquium on Au-
tomata, Languages, and Programming (ICALP 2007),
533–545.

[18] G. Franceschini, S. Muthukrishnan and M. Pǎtraşcu,
‘Radix sorting with no extra space’, in Proc. 15th
European Symposium on Algorithms (ESA 2007), 194–
205.

[19] G. Frederickson, ‘Upper bounds for time-space trade-
offs in sorting and selection’, Journal of Computer and
System Sciences, 34(1):19–26, 1987.

[20] R. Grossi, private communication, 2011; see slide
50 of https://www.imsc.res.in/~dsmeet/grossi_

dsmeet2011_1.pdf.

[21] Y. Han, ‘Deterministic sorting in O(n lg lgn) and linear
space’, Journal of Algorithms, 50(1):96–105, 2004.

[22] Y. Han and M. Thorup, ‘Integer sorting in O(n
√

lg lgn)
expected time and linear space’, in Proc. 43rd IEEE
Symposium on Foundations of Computer Science
(FOCS 2002), 135–144.

[23] J. Katajainen and T. Pasanen, ‘Sorting multisets sta-
bly in minimum space’, Acta Informatica, 31(4):301-
313, 1994.

[24] T. W. Lai and D. Wood, ‘Implicit selection’, in
Proc. 1st Scandinavian Workshop on Algorithm The-
ory (SWAT 1988), 14–23.

[25] J. I. Munro and M. Paterson, ‘Selection and sorting
with limited storage’, Theoretical Computer Science,
12:315-323, 1980.

[26] J. I. Munro and V. Raman, ‘Selection from read-only
memory and sorting with optimum data movement’,
Theoretical Computer Science, 165(2):311-323, 1996.

[27] R. Pagh and J. Pagter, ‘Optimal time-space trade-offs
for non-comparison-based sorting’, in Proc. 13th ACM–
SIAM Symposium on Discrete Algorithms (SODA
2002), 9–18.

[28] J. Pagter and T. Rauhe, ‘Optimal time-space tradeoffs
for sorting’, in Proc. 39th IEEE Symposium on Foun-
dations of Computer Science (FOCS 1998), 264–268.

[29] V. Raman and S. Ramnath, ‘Improved upper bounds
for time-space tradeoffs for selection’, Nordic Journal
of Computing, 6(2):162–180, 1999.

[30] G. Tischler, ‘On wavelet tree construction’, in Proc.
22nd Symposium on Combinatorial Pattern Matching
(CPM 2011), 208–218.

A Appendix

The following lemma was used in the proof of The-
orem 5.1. The sorting part was known: Pagh and
Pagter [27] have in fact reduced the lg n factor in the
space bound to an iterated logarithm, and completely
eliminated the extra factor when T = Ω(n lg∗ n). How-
ever, the weaker bound we need has a much easier proof,
which we include for the sake of completeness.

Lemma A.1. (Read-only-memory integer sorting
and element distinctness) Given a sequence of n in-
tegers in [U], a parameter n ≤ T ≤ n2 and any constant
ε > 0, we can output the elements in sorted order in
O(T+ram-sort(n)) time using O((n2/T) lg n+nε lgU)
bits of space in the read-only memory model. Further-
more, we can decide whether the elements are distinct
in O(T) expected time using O((n2/T) lg n + lgU) bits
of space in the read-only memory model.

Proof. The obvious way to translate a word-RAM sort-
ing algorithm into one in read-only memory is to copy

the input first, which would require at least Θ(n lgU)
bits of space in general. We first show how to convert
any ram-sort(n)-time sorting algorithm into one with
O(ram-sort(n)) time and O(n lg n + nε lgU) bits of
space.

One approach is a multi-way quicksort: First se-
lect O(b) approximate quantiles to decompose into
O(b) intervals each containing at most n/b elements,
where b is a fixed parameter to be set later. For
this step, we can for example apply a streaming
algorithm of Munro and Paterson [25], which uses

O(bO(1) lgO(1) n lgU) bits of space and O(n/(b lgb n))
merging/sorting operations for sublists of sizeO(b lgb n);
this requires O((n/(b lgb n))ram-sort(O(b lgb n))) ≤
O(ram-sort(n)) time.

For each element, we locate which interval it is in.
For this step, we can take each group of b elements
and sort them along with the O(b) quantiles; this
requires O((n/b)ram-sort(O(b))) ≤ O(ram-sort(n))
time and O(bO(1) lgU) bits of space. In addition, to
keep pointers between elements and intervals, we need
O(n lg n) bits of space.

Finally, we recursively sort the elements inside each
interval. If the input size is less than b, we can sort
directly in ram-sort(n) time using O(bO(1) lgU) space.

Because the recursion depth is O(lgb n), the total
time is O(ram-sort(n) lgb n) and the total space in bits

is O(bO(1) lgO(1) n lgU) plus O(n lg n + (n/b) lg(n/b) +
· · ·) = O(n lg n). We can then set b = nΘ(ε) to get
O(ram-sort(n)) time and O(n lg n + nε lgU) bits of
space.

Now, to obtain the time–space tradeoff for sorting,
assume that T ≤ n lg n, for otherwise we can use a
known comparison-based algorithm in read-only mem-
ory [19]. Select O(T/n) quantiles to decompose into
O(T/n) intervals each containing at most n2/T ele-
ments. For this step, we can make O(T/n) invocations
to a known selection algorithm in read-only memory
with O(n) time and O(n) bits of space [15]. Afterwards,
for each interval in sorted order, we find all the elements
in the interval by a linear scan, store a list of point-
ers to such elements using O((n2/T) lg n) bits of space,
then run the preceding algorithm on just these elements.
The total time is O((T/n) · (n + ram-sort(n2/T))) ≤
O(T + ram-sort(n)).

For element distinctness, there is a known algorithm
with O(n) expected time by universal hashing [12], and
this algorithm already uses just O(n lg n + lgU) bits
of space. From this, the time–space tradeoff can be
obtained in the same way. 2

