All-Pairs Shortest Paths and Fine-Grained Complexity

Timothy Chan
 UIUC

(joint work with Virginia Vassilevska Williams (MIT) \& Yinzhan Xu (MIT))
(CALDAM'22)

APSP

- Given weighted dense graph $G=(V, E)$ with n vertices, for every pair $u, v \in V$, compute $D[u, v]=$ shortest path distance from u to v

APSP: Background

$O\left(n^{3}\right)$	Floyd-Warshall'62
$O^{*}\left(n^{3} / \log ^{1 / 3} n\right)$	Fredman'75
$O^{*}\left(n^{3} / \sqrt{\log n}\right)$	Takaoka'92, Dobosiewicz'90
$O^{*}\left(n^{3} / \log ^{5 / 7} n\right)$	Han'04
$O^{*}\left(n^{3} / \log n n\right.$	Takaoka'04, Zwick'04, C.'05
$O^{*}\left(n^{3} / \log ^{5 / 4} n\right)$	Han'06
$O^{*}\left(n^{3} / \log ^{2} n\right)$	C.'07
$O^{*}\left(n^{3} / \log ^{3} n\right)$	C.'17
$O\left(n^{3} / c^{\sqrt{\log n}}\right)$ rand.	Williams'14
$O\left(n^{3} / c^{\sqrt{\log n}}\right)$ det.	C.-Williams'15

- APSP Hypothesis: no $O\left(n^{3-\varepsilon}\right)$ alg'm (even for integer weights)

Hardness from APSP

lots of dynamic problems $\ll m^{\delta}$ [Patrascu'10, AV'14, KPP'16] \uparrow

AE-Sparse-Triangle $\ll m^{4 / 3}$
[Vassilevska W.-Xu'20]

[VW'11, AGV'15]
(note: assumes integer input)

This Talk

- hardness from APSP for unweighted graphs (or small $\widetilde{O}(1)$ integer weights) [C.-Vassilevska W.-Xu, ICALP'21]
- hardness from APSP for real-weighted graphs [C.-Vassilevska W.-Xu, STOC'22, to appear]

unwt-APSP: Background

unweighted undirected:

$$
\widetilde{O}\left(n^{\omega}\right) \quad \leq O\left(n^{2.373}\right) \quad \text { Alon-Galil-Margalit' } 91, \text { Seidel'92 }
$$

unweighted directed:

$$
\begin{array}{lll}
\widetilde{O}\left(n^{(\omega+3) / 2}\right) & \leq O\left(n^{2.687}\right) & \text { Alon-Galil-Margalit'91 } \\
\widetilde{O}\left(n^{2+\rho}\right) & \leq O\left(n^{2.529}\right) & \text { Zwick'98 }
\end{array}
$$

(where ρ satisfies $\omega(1, \rho, 1)=1+2 \rho$)

- unwt-dir-APSP Hypothesis: no $O\left(n^{2.5-\varepsilon}\right)$ alg'm

Prelims on Matrix Multiplication

- given $n_{1} \times n_{2}$ matrix A and $n_{2} \times n_{3}$ matrix B with integer entries in $[\ell]:=\{0, \ldots, \ell\}$
- let $M\left(n_{1}, n_{2}, n_{3}\right)$ be time to compute standard product

$$
(A B)[i, j]=\sum_{k} A[i, k] B[k, j]
$$

- Current bds:

$$
\begin{array}{ll}
M(n, n, n)=O\left(n^{2.373}\right) & \text { Stothers'10, Vassile } \\
M\left(n, n^{0.313}, n\right)=O\left(n^{2+o(1)}\right) & \text { Le Gall-Urrutia'17 } \\
M\left(n, n^{0.529}, n\right)=O\left(n^{2.058}\right) & \text { Le Gall-Urrutia'17 }
\end{array}
$$

Prelims on Matrix Multiplication

- given $n_{1} \times n_{2}$ matrix A and $n_{2} \times n_{3}$ matrix B with integer entries in $[\ell]:=\{0, \ldots, \ell\}$
- let $M\left(n_{1}, n_{2}, n_{3}\right)$ be time to compute standard product

$$
(A B)[i, j]=\sum_{k} A[i, k] B[k, j]
$$

- let $M^{*}\left(n_{1}, n_{2}, n_{3} \mid \ell\right)$ be time to compute (min,+) product

$$
(A * B)[i, j]=\min _{k}(A[i, k]+B[k, j])
$$

- Trivial: $M^{*}\left(n_{1}, n_{2}, n_{3} \mid \ell\right)=O\left(n_{1} n_{2} n_{3}\right)$
- Fact: $M^{*}\left(n_{1}, n_{2}, n_{3} \mid \ell\right)=\widetilde{O}\left(\ell \cdot M\left(n_{1}, n_{2}, n_{3}\right)\right)$
- Proof: can compute (max,+) product from standard product of $A^{\prime}[i, k]=U^{A[i, k]} \& B^{\prime}[k, j]=U^{B[k, j]} \quad$ (large $\widetilde{O}(\ell)$-bit integers)

Why (min,+) Product is Useful to APSP

- Suppose we have computed all shortest paths of length $\leq \ell / 2$
- To compute all shortest paths of length $\leq \ell$:

$$
\begin{aligned}
& \quad D_{\leq \ell}[u, v]=\min _{x \in V}\left(D_{\leq \ell / 2}[u, x]+D_{\leq \ell / 2}[x, v]\right) \\
& \Rightarrow \text { time } O\left(M^{*}(n, n, n \mid \ell)\right)
\end{aligned}
$$

- try all ℓ 's that are powers of $2 .$. . but doesn't work well as ℓ gets large!

Hitting Set

- Observation: \exists subset $H_{\ell} \subset V$ that hits all shortest paths of length $\geq \ell$, with $\left|H_{\ell}\right|=\widetilde{O}(n / \ell)$
- Proof: just take random $H_{\ell} \subset V$, with sampling prob. p
\Rightarrow for any fixed $u, v \in V$ with shortest path $\pi[u, v]$ of length $\geq \ell$,

$$
\begin{aligned}
\operatorname{Pr}\left[H_{\ell} \text { not hit } \pi[u, v]\right] & \leq(1-p)^{\ell} \\
& \leq e^{-p \ell} \\
& \leq 1 / n^{c} \quad \text { by setting } p=(c / \ell) \ln n
\end{aligned}
$$

(Alternate Proof: greedy hitting set)

First unwt-dir-APSP Alg'm

- short shortest paths of length $\leq \ell_{0}$:
\Rightarrow total time $\widetilde{O}\left(M\left(n, n, n \mid \ell_{0}\right)\right)=\widetilde{O}\left(\ell_{0} n^{\omega}\right)$
- long shortest paths of length $\geq \ell_{0}$:
compute single-source shortest paths from each $x \in H_{\ell_{0}}$ \& single-sink shortest paths to each $x \in H_{\ell_{0}}$
\Rightarrow total time $O\left(\left|H_{\ell_{0}}\right| \cdot n^{2}\right)=O\left(n^{3} / \ell_{0}\right)$
- set $\ell_{0}=n^{(3-\omega) / 2} \Rightarrow \widetilde{O}\left(n^{(\omega+3) / 2}\right)$

Zwick's unwt-dir-APSP Alg'm ('98)

- Suppose we have computed all shortest paths of length $\leq 2 \ell / 3$
- To compute all shortest paths of length in $(2 \ell / 3, \ell]$:

$$
\begin{aligned}
& \rightarrow 2 \ell / 3 \underbrace{x}_{\ell / 3} \\
& D_{\leq \ell}[u, v]=\min \left\{\begin{array}{l}
D_{\leq 2 \ell / 3}[u, v] \\
\min _{x \in H_{\ell / 3}}\left(D_{\leq 2 \ell / 3}[u, x]+D_{\leq 2 \ell / 3}[x, v]\right\}
\end{array}\right. \\
& \Rightarrow \operatorname{time} O\left(M^{*}\left(n,\left|H_{\ell / 3}\right|, n \mid \ell\right)\right)=\widetilde{O}\left(M^{*}(n, n / \ell, n \mid \ell)\right)
\end{aligned}
$$

- try all ℓ 's that are powers of $3 / 2$
\Rightarrow total time $\widetilde{O}\left(\max _{\ell} M^{*}(n, n / \ell, n \mid \ell)\right)$

Zwick's unwt-dir-APSP Alg'm ('98)

$\widetilde{O}\left(\max _{\ell} M^{*}(n, n / \ell, n \mid \ell)\right)$
$\leq \widetilde{O}\left(\max _{\ell} \min \{\ell \cdot M(n, n / \ell, n), n \cdot(n / \ell) \cdot n\}\right)$
$\leq \widetilde{O}\left(\ell_{0} \cdot M\left(n, n / \ell_{0}, n\right)+n^{3} / \ell_{0}\right)$

- set $\ell_{0}=n^{0.471} \Rightarrow O\left(n^{2.529}\right)$

can Zwick's alg'm be improved?

is there a more graph-theoretical approach?

New: Zwick's Alg'm is "Optimal"!

- Zwick's Alg'm: unwt-dir-APSP $(n) \leq \widetilde{O}\left(\max _{\ell} M^{*}(n, n / \ell, n \mid \ell)\right)$
- Claim: $\max _{\ell} M^{*}(n, n / \ell, n \mid \ell) \leq O$ (unwt-dir-APSP $\left.(n)\right)$

New: Zwick's Alg'm is "Optimal"!

- Claim: $\max _{\ell} M^{*}(n, n / \ell, n \mid \ell) \leq O$ (unwt-dir-APSP $\left.(n)\right)$
- Proof: (min,+) product of $n \times n / \ell$ matrix A and $n / \ell \times n$ matrix B with entries in $[\ell]$ reduces to APSP on this unweighted graph:

Consequences: Equivalences

1. dir-APSP with small $\widetilde{O}(1)$ integer wts is equally hard as unwt.
2. dir-APSP with small $\widetilde{O}(1)$ integer wts is equally hard with or without negative wts
3. unwt-dir-APSP is equally hard for DAGs as for general dir. graphs
4. unwt-APSP and unwt-APLP are equally hard for DAGs
5. for unwt-dir-APSP, computing distances is equally hard as paths
6. unwt-(≤ 2)-red-APSP is equally hard for undir. as for dir. graphs (related to all-pairs lightest shortest paths [Zwick'99])
7. approximate unwt-dir-APSP with $\widetilde{O}(1)$ additive error is equally hard as exact (related to [Roditty-Shapira'08])
8. unique unwt-dir-APSP is equally hard as unwt-dir-APSP (related to APSP counting)

Hardness from unwt-dir-APSP: Example

- Variants of matrix product for $n \times n$ matrices having alg'ms with "intermediate" complexity:
- min-witness product $(\min \{k: A[i, k] \wedge B[k, j]\})$ in $O\left(n^{2.529}\right)$
- dominance product ($\left.\wedge_{k}[A[i, k]<B[k, j]]\right)$ in $O\left(n^{2.684}\right)$ [Matoušek'91]
- equality product $\left(\mathrm{V}_{k}[A[i, k]=B[k, j]]\right)$ in $O\left(n^{2.684}\right)$
- min-witness equality product ($\min \{k: A[i, k]=B[k, j]\}$) in $O\left(n^{2.688}\right)$
- $(\min ,=) \operatorname{product}(\min \{A[i, k]: A[i, k]=B[k, j]\})$ in $O\left(n^{2.688}\right)$
- (min,max) product $\left(\min _{k} \max \{A[i, k], B[k, j]\}\right)$ in $O\left(n^{2.688}\right)$ [Duan-Pettie'09]
- Claim: unwt-dir-APSP reduces to min-witness equality product

Hardness from unwt-dir-APSP: Example

- Claim: unwt-dir-APSP reduces to min-witness equality product
- Proof: (min,+) product of $n \times n / \ell$ matrix A and $n / \ell \times n$ matrix B with entries in $[\ell]$ reduces to min-witness equality product of:

$$
A^{\prime}[i,(k, z)]=A[i, k] \quad \text { and } \quad B^{\prime}[(k, z), j]=z-B[k, j]
$$

where we $\operatorname{order}(k, z) \in[n / \ell] \times[O(\ell)]$ by z

Hardness from unwt-dir-APSP

- Open: min-witness product? equality product?

This Talk

- hardness from APSP for unweighted graphs (or small $\widetilde{O}(1)$ integer weights)
[C.-Vassilevska W.-Xu, ICALP'21]
- hardness from APSP for real-weighted graphs
[C.-Vassilevska W.-Xu, STOC'22, to appear]

Hardness from int-real-APSP

AE-Sparse-Triangle

- Given graph $G=(V, E)$ with m edges, for every edge $u v \in E$, decide \exists triangle through $u v$

- Note: related to set disjointness queries $(N(u) \cap N(v) \neq \emptyset$?)
- Alon-Yuster-Zwick'94: $O\left(m^{2 \omega /(\omega+1)}\right) \leq O\left(m^{1.408}\right)$

Fredman’s real-APSP "Alg'm" ('75)

- by known reduction, real- $\operatorname{APSP}(n) \leq \widetilde{O}\left(M^{*}(n, n, n)\right) \leq \widetilde{O}\left(n / d \cdot M^{*}(n, d, n)\right)$
- suffice to compute (min,+) product of $n \times d$ matrix A and $d \times n$ matrix B
- Fredman's trick: $A\left[i, k^{\prime}\right]+B\left[k^{\prime}, j\right]<A[i, k]+B[k, j]$

$$
\Longleftrightarrow A\left[i, k^{\prime}\right]-A[i, k]<B[k, j]-B\left[k^{\prime}, j\right]
$$

- sort all $A\left[i, k^{\prime}\right]-A[i, k]$ and all $B[k, j]-B\left[k^{\prime}, j\right]$ in $\widetilde{O}\left(d^{2} n\right)$ time
- afterwards, can compute $A * B$ without any more comparisons!
- total \# comps $\widetilde{O}\left((n / d) \cdot\left(d^{2} n+n^{2}\right)\right)$
- set $d=\sqrt{n} \Rightarrow \widetilde{O}\left(n^{5 / 2}\right)$ comps (but runtime still n^{3} !)

New: Fredman as a Reduction!

- first "guess" answers $k_{i j}=\arg \min _{k}(A[i, k]+B[k, j])$
- for each $k \in[d]$, solve AE-Sparse-Triangle on this graph G_{k} :

1. for each $i, j \in[n]$ with $k_{i j}=k$, create edge $u[i] v[j]$
2. for each $i \in[n], k^{\prime} \in[d]$ and dyadic interval I, create edge $u[i] x\left[k^{\prime}, I\right]$ if $\operatorname{rank}\left(A\left[i, k^{\prime}\right]-A[i, k]\right)$ is in left half of I
3. for each $j \in[n], k^{\prime} \in[d]$ and dyadic interval I, create edge $x\left[k^{\prime}, I\right] v[j]$ if $\operatorname{rank}\left(B[k, j]-B\left[k^{\prime}, j\right]\right)$ is in right half of I

New: Fredman as a Reduction!

- first "guess" answers $k_{i j}=\arg \min _{k}(A[i, k]+B[k, j])$
- for each $k \in[d]$, solve AE-Sparse-Triangle on this graph G_{k} :

1. for each $i, j \in[n]$ with $k_{i j}=k$, create edge $u[i] v[j]$
2. for each $i \in[n], k^{\prime} \in[d]$ and dyadic interval I, create edge $u[i] x\left[k^{\prime}, I\right]$ if $\operatorname{rank}\left(A\left[i, k^{\prime}\right]-A[i, k]\right)$ is in left half of I
3. for each $j \in[n], k^{\prime} \in[d]$ and dyadic interval I, create edge $x\left[k^{\prime}, I\right] v[j]$ if $\operatorname{rank}\left(B[k, j]-B\left[k^{\prime}, j\right]\right)$ is in right half of I

- Observation: \exists triangle through $u[i] v[j]$

$$
\begin{aligned}
& \Longleftrightarrow \exists k^{\prime}, A\left[i, k^{\prime}\right]-A[i, k]<B[k, j]-B\left[k^{\prime}, j\right] \\
& \Longleftrightarrow \exists k^{\prime}, A\left[i, k^{\prime}\right]+B\left[k^{\prime}, j\right]<A[i, k]+B[k, j] \\
& \Longleftrightarrow k \text { isn't correct answer for } k_{i j}!
\end{aligned}
$$

New: Fredman as a Reduction!

- first "guess" answers $k_{i j}=\arg \min _{k}(A[i, k]+B[k, j])$
- for each $k \in[d]$, solve AE-Sparse-Triangle on this graph G_{k} :

1. for each $i, j \in[n]$ with $k_{i j}=k$, create edge $u[i] v[j]$
2. for each $i \in[n], k^{\prime} \in[d]$ and dyadic interval I, create edge $u[i] x\left[k^{\prime}, I\right]$ if $\operatorname{rank}\left(A\left[i, k^{\prime}\right]-A[i, k]\right)$ is in left half of I
3. for each $j \in[n], k^{\prime} \in[d]$ and dyadic interval I, create edge $x\left[k^{\prime}, I\right] v[j]$ if $\operatorname{rank}\left(B[k, j]-B\left[k^{\prime}, j\right]\right)$ is in right half of I

- Analysis: G_{k} has $O\left(n^{2} / d+d n \log n\right)$ edges on average \Rightarrow total time $\widetilde{O}\left((n / d) \cdot d \cdot\right.$ AE-Sparse-Triangle $\left.\left(n^{2} / d+d n\right)\right)$
- set $d=\sqrt{n} \Rightarrow \widetilde{O}\left(n \cdot\right.$ AE-Sparse-Triangle $\left.\left(n^{3 / 2}\right)\right)$

New: Fredman as a Reduction!

- Theorem: real- $\operatorname{APSP}(n) \leq \widetilde{O}(n \cdot \operatorname{AE}-S p a r s e-T r i a n g l e(~(n / 2))$
- Corollary: if AE-Sparse-Triangle $(m) \leq O\left(m^{4 / 3-\varepsilon}\right)$, then real- $\operatorname{APSP}(n) \leq O\left(n \cdot\left(n^{3 / 2}\right)^{4 / 3-\varepsilon}\right) \leq O\left(n^{3-\varepsilon^{\prime}}\right)$

Conclusions

- Moral: reinterpret known alg'ms as reductions!
- Many open questions:
- relationship between int-APSP, unwt-dir-APSP, \& real-APSP hypotheses?
- better understanding of problems with intermediate complexity between n^{2} and $n^{3} \ldots$
- counting variant of APSP in $\widetilde{O}\left(n^{3}\right)$ time for weighted graphs? (note: counts may be large $\widetilde{O}(n)$-bit numbers!)

