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Theme 

• Beyond worst-case analysis 

 

• “Adaptive” algorithms 

   

 [a theory w. connections to output-sensitive alg’ms, 
average-case alg’ms, decision-tree lower bds, 
partition trees, adversary arguments, entropy, 
distribution-sensitive data structures…] 



Example: 2D Convex Hull 

    



Example: 2D Convex Hull 

• Background: 

 

– O(n log n) time alg’ms 

• Graham’s scan’72 

• Divide&conquer  [Preparata,Hong’77] 

• Randomized incremental  [Clarkson,Shor’88] 

 

– Ω(n log n) lower bd  [Ben-Or’83] 



2D Convex Hull  (Cont’d) 

• “Output-Sensitive” Alg’ms 
 

– O(nh) time 

• Jarvis’ march’73 
 

– O(n log h) time 

• Kirkpatrick,Seidel’86  [“ultimate… ?”]  

• Clarkson,Shor’88  [random sampling] 

• Chan,Snoeyink,Yap’95  [prune,divide&conquer] 

• Chan’95  [grouping+Jarvis] 
 

–  Ω(n log h) lower bd 



2D Convex Hull  (Cont’d) 

• “Average-Case” Alg’ms 

 

– O(n) expected time for 

• uniformly distributed pts inside square/disk/… 

• normally distributed pts  [Bentley,Shamos’78] 



2D Convex Hull  (Cont’d) 

• Easy vs. Hard Point Sets 



New Result for 2D Convex Hull 

• An adaptive alg’m that is optimal                 
in terms of every parameter imaginable ! 



New Result for 2D Convex Hull 

• An adaptive alg’m that is optimal                 
for every point set !! 



New Result for 2D Convex Hull 

• An adaptive alg’m that is optimal                 
for every instance !! 



Def’n of “Instance Optimality” 
(First Attempt) 

• Let TA(S)  =  runtime of alg’m A on input sequence S 

 

• Let OPT(S)  =  min TA(S) over all alg’ms A 

 

• A is instance-optimal if TA(S) ≤  O(1) ∙ OPT(S)  S 

 



Def’n of “Instance Optimality” 
(First Attempt) 

• Let TA(S)  =  runtime of alg’m A on input sequence S 

 

• Let OPT(S)  =  min TA(S) over all alg’ms A 

 

• A is instance-optimal if TA(S) ≤  O(1) ∙ OPT(S)  S 

 

 

 … but not possible for 2D convex hull !! 

 [for every input sequence S, there is an alg’m with runtime O(n) on S] 



Our Def’n of “Instance Optimality” 

• Let TA(S)  =  max runtime of alg’m A over all    
               permutations of input set S 

 

• Let OPT(S)  =  min TA(S) over all alg’ms A 

 

• A is instance-optimal in the order-oblivious setting if 
TA(S)  ≤  O(1) ∙ OPT(S)  S 



Our Def’n of “Instance Optimality” 

• Let TA(S)  =  max runtime of alg’m A over all    
               permutations of input set S 

 

• Let OPT(S)  =  min TA(S) over all alg’ms A 

 

• A is instance-optimal in the order-oblivious setting if 
TA(S)  ≤  O(1) ∙ OPT(S)  S 

 

 [subsumes output-sensitive alg’ms, & any alg’m that does not exploit 
input order, etc.] 



Our Def’n of “Instance Optimality”  
(Slightly Stronger Version) 

• Let tA(S)  =  average runtime of alg’m A over all    
              permutations of input set S 

 

• Let opt(S)  =  min tA(S) over all alg’ms A 

 

• A is instance-optimal in the random-order setting if 
TA(S)  ≤  O(1) ∙ opt(S)  S 



Our Def’n of “Instance Optimality”  
(Slightly Stronger Version) 

• Let tA(S)  =  average runtime of alg’m A over all    
              permutations of input set S 

 

• Let opt(S)  =  min tA(S) over all alg’ms A 

 

• A is instance-optimal in the random-order setting if 
TA(S)  ≤  O(1) ∙ opt(S)  S 

 

 [subsumes average-case alg’ms for any distribution, & randomized 
incremental alg’ms, etc.] 



Related Work on Instance Optimality 

• Fagin,Lotem,Naor’03  [in database] 
 

• Competitive binary search trees  [Sleator,Tarjan’85’s 
“dynamic optimality conjecture”] 
 

• Competitive analysis of on-line alg’ms  
 

• Various adaptive alg’ms, e.g., 
[Demaine,Lopez-Ortiz,Munro’00: set union/intersection; 

Baran,Demaine’04: approx problems about “black-box” curves; etc.] 



New Result for 2D Convex Hull 

• An alg’m that is instance-optimal in the 
order-oblivious (& random-order) setting 



Outline 

1. What is OPT(S)? 

 

2. Upper Bound 

 

3. Lower Bound 

 

4. Applications to Other Problems 



1.  What is OPT(S)? 

  



 A Measure of Difficulty 

• Given point set S of size n 

• Consider a partition P of S into subsets Si s.t.  

 each subset can be enclosed in a triangle inside    (*)   
convex hull(S) 

 

• Let   H(P)  :=    ∑i   |Si| log (n/|Si|) 
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convex hull(S) 
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H(P) ~ n + h log n H(P) ~ n log h 



 A Measure of Difficulty 

• Given point set S of size n 

• Consider a partition P of S into subsets Si s.t.  

 each subset can be enclosed in a triangle inside    (*)   
convex hull(S) 

 

• Let   H(P)  :=    ∑i   |Si| log (n/|Si|) 

 

• Define the difficulty of S to be 

 H(S)  :=  min H(P) over all valid partitions P       
             satisfying (*) 

 

 



Connections 

• Multiset sorting requires time  O(∑i  ni log (n/ni)) for 
multiplicities ni 

 

• Biased search trees require average query time         
O(∑i pi log (1/pi)) (the entropy) for probabilities pi  

 

• H(P)  =  ∑i  |Si| log (n/|Si|) corresponds to the “entropy” 
of the partition P [after dividing by n] 

 

• Sen,Gupta’99… 



2.  Upper Bound 

  



Kirkpatrick,Seidel’s Alg’m 

 UpperHull(S): 

1. if |S| ≤ 2 return … 

  

 

2. xm = median x in S 

3. find hull edge pq  (“bridge”) at x = xm   [by 2D LP] 

4. prune all pts below pq 

5. UpperHull({all pts left of x = xm}) 

6. UpperHull({all pts right of x = xm}) 

p q 



Kirkpatrick,Seidel’s Alg’m (Slightly Modified) 

 UpperHull(S): 

0. if |S| ≤ 2 return … 

1. prune all pts below ab, where 

 a = leftmost pt,  b = rightmost pt 

2. xm = median x in S 

3.  find hull edge pq  (“bridge”) at x = xm   [by 2D LP] 

4. prune all pts below pq 

5. UpperHull({all pts left of x = xm}) 

6. UpperHull({all pts right of x = xm}) 

p q 

a 
b 



Analysis 

• At level k of recursion: 

 

 

 

 

 

 
 

 

≤ n/2k pts ≤ n/2k pts 
≤ n/2k pts 



Analysis 

• At level k of recursion: 

 

 

 

 

 

 
 

• Let P be any valid partition 

• Let Si be any subset of P, enclosed in triangle Δi  

  # pts in Si that survive level k  ≤  min { |Si|,  3n/2k } 

 total # pts that survive level k  ≤  O(∑i  min {|Si|, n/2k} ) 

≤ n/2k pts ≤ n/2k pts 
≤ n/2k pts 

Δi 



Analysis  (Cont’d) 

• Runtime  

 ≤  O( ∑k ∑i  min { |Si|,  n/2k } ) 

 =  O( ∑i  ∑k min { |Si|,  n/2k } ) 

 =  O( ∑i  ( |Si| + … + |Si|  + |Si|/2 + |Si|/4 + … ) ) 

                   log (n/|Si|) times   

 

 =  O( ∑i |Si| log (n/|Si|) )  =  O(H(P)) 

 

 Runtime  ≤  O( minP H(P) )  =  O(H(S)) 



3.  Lower Bound 

  



Traditional Ω(n log n)  Pfs  (via Topology) 

• Van Emde Boas’80:  linear decision trees 
 [but convex hull not solvable in this model !] 

 

• Yao’82: quadratic decision tree  
 

• Steeles,Yao’82: const-deg algebraic decision trees 
 [but not quite successful for convex hull…] 
 

• Ben-Or’83: const-deg algebraic decision trees  

   & algebraic computation trees 

 

 … but none of these gives instance-specific lower bds ! 



A Different, Simple Ω(n log n) Pf  
 (No Topology Required !) 

• Toy Problem:  given n pts x1,…, xn in R1, are they distinct? 

 

• Pf by adversary argument 

 

• Simulate alg’m on unknown input 

• Maintain an interval Ii for each xi (initially Ii = [0,1]) 



Simple Ω(n log n) Pf  (Cont’d)  

• When alg’m compares xi ? xj : 

– if midpoint(Ii)  <  midpoint(Ij) then 

 set Ii  left half of Ii 

       Ij  right half of Ij  & declare “<’’ 

– else similar 
 

• Let depth(xi)  :=  log (1/length(Ii)) 

• After T comparisons, total depth ≤  O(T) 
 

• At the end, can’t have 2 pts whose intervals 
coincide/overlap  [otherwise, answer could change] 

  can’t have  > n/2 pts with depth ≤ log(n/2) 

  T  ≥  Ω(total depth)  ≥   Ω(n log n)                    Q.E.D. 



Simple Ω(n log n) Pf  (Generalized Version)  

• When alg’m tests f(xi, xj) ? 0 for const-deg alg. fn f: 

– take r grid subintervals Ii’ of Ii 

         r grid subintervals Ij’ of Ij 
 

– among the r2 grid cells Ii’ x Ij’,   

 f = 0 intersects O(r) cells 
 

 for suff. large const r, 

 can set Ii  one of Ii’  

         Ij  one of Ij’  s.t. sign(f) is determined 

Ii 

Ij 

f=0 



Simple Ω(n log n) Pf  (Generalized Version)  

• When alg’m tests f(xi, xj) ? 0 for const-deg alg. fn f: 

– take r grid subintervals Ii’ of Ii 

         r grid subintervals Ij’ of Ij 
 

– among the r2 grid cells Ii’ x Ij’,   

 f = 0 intersects O(r) cells 
 

 for suff. large const r, 

 can set Ii  one of Ii’  

         Ij  one of Ij’  s.t. sign(f) is determined 
 

• Note:  extends to decision trees w. const-deg algebraic 
test fns w. any const # of args  [Moran,Snir,Manber’85 had 
diff. pf for arbitrary test fns w. const # of args, via Ramsey 
theory, but it’s not instance-specific…] 

Ii 

Ij 

f=0 



An Instance-Specific Lower Bd Pf for 
Convex Hull 

• Note:  holds for decision trees w. multilinear test fns w. 
const # of args 

 

• Ex:  f((x1,y1),(x2,y2))  = x1y2 + x2y1 is multilinear 

   f((x1,y1),(x2,y2))  = x1y1 + x2y2 is not 

   the determinant is… 

 



Instance-Specific Lower Bd Pf  (Cont’d) 

• Partition Thm:  [Willard’82,…,Matoušek’91] 

 Any point set S can be partitioned into ~ r subsets Si of 
size n/r, each enclosed in (disjoint) cell Δi of size Õ(1) 
s.t. each line crosses O(r1-ε) cells 

  

 



Instance-Specific Lower Bd Pf  (Cont’d) 

• Recurse     partition tree  

where each cell at depth k contains n/rk pts 

i.e., depth of cell = logr (n/(# pts)) 

 

• Make cell Δ a leaf if Δ is inside convex hull(S) 

• Let P** be the partition formed by the leaves 

 

• Pf by adversary argument again 

• Maintain a cell Δp for each pt p in S (initially, Δp = root) 



Instance-Specific Lower Bd Pf  (Cont’d) 

• When alg’m tests f(p,q) ? 0: 

– take the ~ r subcells Δp’ of Δp 

       ~ r subcells Δq’ of Δq 

– among the ~ r2 cells Δp’ x Δq’,  f = 0 intersects Õ(r2-ε) 
cells  [since f is multilinear & line crossing # is O(r1-ε)] 

 can set Δp  one of Δp’ 

    Δq  one of Δq’   s.t. sign(f) is determined 

 

• When Δp = a leaf, fix p to an unassigned pt in S  Δp  

• Minor note: don’t let  > |S  Δ’| pts go under a child Δ’ … 

 At the end, get a permutation of S 



Instance-Specific Lower Bd Pf  (Cont’d) 

• Let depth(p) := depth of Δp in partition tree 

• After T comparisons, total depth ≤  O(T) 

 

• At the end, each Δp must be a leaf  [otherwise convex hull 
could change] 

 

  T  ≥  Ω(total depth) 

      ≥  Ω( ∑leaf Δ |S  Δ| depth(Δ) ) 

      ≥  Ω( ∑leaf Δ |S  Δ| log (n/|S  Δ|) ) 

         = Ω(H(P**))   ≥   Ω(H(S))                          Q.E.D.  



4.  Other Applications 

  



3D Convex Hull 

• Lower bd pf:  same 

 

• Upper bd:   a new alg’m, using partition trees combined 
w. grouping [Chan’95] … 

 



2D/3D Maxima 

 

 

 

 

 

 

 

 

• Similar, except simpler: partition trees can be replaced 
by k-d trees 



2D/3D Red-Blue Dominance 

 

 

 

 

 

 

• Consider a partition P of S into red/blue subsets Si s.t.  

 each red subset can be enclosed in a box where every 
pt in the box is dominated by exactly the same set of 
blue pts in S, & vice versa 

• H(S)  :=  min H(P) over all such partitions P 

easy instance 



2D Orthogonal Segment Intersection 

 

 

 

 

 

 

 

 

• Lift each horizontal/vertical segment s into a red/blue 
point s* in 3D… 

easy instance 



2D Offline Point Location 

 

 

 

 

 

 

• Consider a partition P of S into subsets Si s.t.  

 each subset can be enclosed in a triangle completely 
inside one region   

• H(S)  :=  min H(P) over all such partitions P 



2D Point Location Queries 

 

 Get a data structure with average query time O(H(S)/n), 
i.e., O(entropy) 

 

• Note: re-proves known “distribution-sensitive” data 
structures  [Arya,Malamatos,Mount’00; Iacono’01; etc.] 

 

• Note: gets new distribution-sensitive data structures 
for many other query problems, e.g., 2D orthogonal range 
counting [answers open problem by Dujmovic,Howat,Morin’09], … 



Conclusions 

• Specific open problems: 

– Nonorthogonal red-blue segment intersection 

– Diameter/width of a 2D point set 

– Beyond multilinear decision trees 

 

• Other instance-optimal/adaptive models? [order-dependent?] 

 

• Problems w. worst-case complexity worse than n log n??    
[e.g., offline simplex range search] 


