
Instance-Optimal
Geometric Algorithms

Timothy Chan
School of CS

U. Waterloo

joint work with

 Peyman Afshani (MADALGO, Aarhus U)
Jérémy Barbay (U. Chile)

Theme

• Beyond worst-case analysis

• “Adaptive” algorithms

 [a theory w. connections to output-sensitive alg’ms,
average-case alg’ms, decision-tree lower bds,
partition trees, adversary arguments, entropy,
distribution-sensitive data structures…]

Example: 2D Convex Hull

Example: 2D Convex Hull

• Background:

– O(n log n) time alg’ms

• Graham’s scan’72

• Divide&conquer [Preparata,Hong’77]

• Randomized incremental [Clarkson,Shor’88]

– Ω(n log n) lower bd [Ben-Or’83]

2D Convex Hull (Cont’d)

• “Output-Sensitive” Alg’ms

– O(nh) time

• Jarvis’ march’73

– O(n log h) time

• Kirkpatrick,Seidel’86 [“ultimate… ?”]

• Clarkson,Shor’88 [random sampling]

• Chan,Snoeyink,Yap’95 [prune,divide&conquer]

• Chan’95 [grouping+Jarvis]

– Ω(n log h) lower bd

2D Convex Hull (Cont’d)

• “Average-Case” Alg’ms

– O(n) expected time for

• uniformly distributed pts inside square/disk/…

• normally distributed pts [Bentley,Shamos’78]

2D Convex Hull (Cont’d)

• Easy vs. Hard Point Sets

New Result for 2D Convex Hull

• An adaptive alg’m that is optimal
in terms of every parameter imaginable !

New Result for 2D Convex Hull

• An adaptive alg’m that is optimal
for every point set !!

New Result for 2D Convex Hull

• An adaptive alg’m that is optimal
for every instance !!

Def’n of “Instance Optimality”
(First Attempt)

• Let TA(S) = runtime of alg’m A on input sequence S

• Let OPT(S) = min TA(S) over all alg’ms A

• A is instance-optimal if TA(S) ≤ O(1) ∙ OPT(S) S

Def’n of “Instance Optimality”
(First Attempt)

• Let TA(S) = runtime of alg’m A on input sequence S

• Let OPT(S) = min TA(S) over all alg’ms A

• A is instance-optimal if TA(S) ≤ O(1) ∙ OPT(S) S

 … but not possible for 2D convex hull !!

 [for every input sequence S, there is an alg’m with runtime O(n) on S]

Our Def’n of “Instance Optimality”

• Let TA(S) = max runtime of alg’m A over all
 permutations of input set S

• Let OPT(S) = min TA(S) over all alg’ms A

• A is instance-optimal in the order-oblivious setting if
TA(S) ≤ O(1) ∙ OPT(S) S

Our Def’n of “Instance Optimality”

• Let TA(S) = max runtime of alg’m A over all
 permutations of input set S

• Let OPT(S) = min TA(S) over all alg’ms A

• A is instance-optimal in the order-oblivious setting if
TA(S) ≤ O(1) ∙ OPT(S) S

 [subsumes output-sensitive alg’ms, & any alg’m that does not exploit
input order, etc.]

Our Def’n of “Instance Optimality”
(Slightly Stronger Version)

• Let tA(S) = average runtime of alg’m A over all
 permutations of input set S

• Let opt(S) = min tA(S) over all alg’ms A

• A is instance-optimal in the random-order setting if
TA(S) ≤ O(1) ∙ opt(S) S

Our Def’n of “Instance Optimality”
(Slightly Stronger Version)

• Let tA(S) = average runtime of alg’m A over all
 permutations of input set S

• Let opt(S) = min tA(S) over all alg’ms A

• A is instance-optimal in the random-order setting if
TA(S) ≤ O(1) ∙ opt(S) S

 [subsumes average-case alg’ms for any distribution, & randomized
incremental alg’ms, etc.]

Related Work on Instance Optimality

• Fagin,Lotem,Naor’03 [in database]

• Competitive binary search trees [Sleator,Tarjan’85’s
“dynamic optimality conjecture”]

• Competitive analysis of on-line alg’ms

• Various adaptive alg’ms, e.g.,
[Demaine,Lopez-Ortiz,Munro’00: set union/intersection;

Baran,Demaine’04: approx problems about “black-box” curves; etc.]

New Result for 2D Convex Hull

• An alg’m that is instance-optimal in the
order-oblivious (& random-order) setting

Outline

1. What is OPT(S)?

2. Upper Bound

3. Lower Bound

4. Applications to Other Problems

1. What is OPT(S)?

 A Measure of Difficulty

• Given point set S of size n

• Consider a partition P of S into subsets Si s.t.

 each subset can be enclosed in a triangle inside (*)
convex hull(S)

• Let H(P) := ∑i |Si| log (n/|Si|)

 A Measure of Difficulty

• Given point set S of size n

• Consider a partition P of S into subsets Si s.t.

 each subset can be enclosed in a triangle inside (*)
convex hull(S)

• Let H(P) := ∑i |Si| log (n/|Si|)

 A Measure of Difficulty

• Given point set S of size n

• Consider a partition P of S into subsets Si s.t.

 each subset can be enclosed in a triangle inside (*)
convex hull(S)

• Let H(P) := ∑i |Si| log (n/|Si|)

H(P) ~ n + h log n H(P) ~ n log h

 A Measure of Difficulty

• Given point set S of size n

• Consider a partition P of S into subsets Si s.t.

 each subset can be enclosed in a triangle inside (*)
convex hull(S)

• Let H(P) := ∑i |Si| log (n/|Si|)

• Define the difficulty of S to be

 H(S) := min H(P) over all valid partitions P
 satisfying (*)

Connections

• Multiset sorting requires time O(∑i ni log (n/ni)) for
multiplicities ni

• Biased search trees require average query time
O(∑i pi log (1/pi)) (the entropy) for probabilities pi

• H(P) = ∑i |Si| log (n/|Si|) corresponds to the “entropy”
of the partition P [after dividing by n]

• Sen,Gupta’99…

2. Upper Bound

Kirkpatrick,Seidel’s Alg’m

 UpperHull(S):

1. if |S| ≤ 2 return …

2. xm = median x in S

3. find hull edge pq (“bridge”) at x = xm [by 2D LP]

4. prune all pts below pq

5. UpperHull({all pts left of x = xm})

6. UpperHull({all pts right of x = xm})

p q

Kirkpatrick,Seidel’s Alg’m (Slightly Modified)

 UpperHull(S):

0. if |S| ≤ 2 return …

1. prune all pts below ab, where

 a = leftmost pt, b = rightmost pt

2. xm = median x in S

3. find hull edge pq (“bridge”) at x = xm [by 2D LP]

4. prune all pts below pq

5. UpperHull({all pts left of x = xm})

6. UpperHull({all pts right of x = xm})

p q

a
b

Analysis

• At level k of recursion:

≤ n/2k pts ≤ n/2k pts
≤ n/2k pts

Analysis

• At level k of recursion:

• Let P be any valid partition

• Let Si be any subset of P, enclosed in triangle Δi

 # pts in Si that survive level k ≤ min { |Si|, 3n/2k }

 total # pts that survive level k ≤ O(∑i min {|Si|, n/2k})

≤ n/2k pts ≤ n/2k pts
≤ n/2k pts

Δi

Analysis (Cont’d)

• Runtime

 ≤ O(∑k ∑i min { |Si|, n/2k })

 = O(∑i ∑k min { |Si|, n/2k })

 = O(∑i (|Si| + … + |Si| + |Si|/2 + |Si|/4 + …))

 log (n/|Si|) times

 = O(∑i |Si| log (n/|Si|)) = O(H(P))

 Runtime ≤ O(minP H(P)) = O(H(S))

3. Lower Bound

Traditional Ω(n log n) Pfs (via Topology)

• Van Emde Boas’80: linear decision trees
 [but convex hull not solvable in this model !]

• Yao’82: quadratic decision tree

• Steeles,Yao’82: const-deg algebraic decision trees
 [but not quite successful for convex hull…]

• Ben-Or’83: const-deg algebraic decision trees

 & algebraic computation trees

 … but none of these gives instance-specific lower bds !

A Different, Simple Ω(n log n) Pf
 (No Topology Required !)

• Toy Problem: given n pts x1,…, xn in R1, are they distinct?

• Pf by adversary argument

• Simulate alg’m on unknown input

• Maintain an interval Ii for each xi (initially Ii = [0,1])

Simple Ω(n log n) Pf (Cont’d)

• When alg’m compares xi ? xj :

– if midpoint(Ii) < midpoint(Ij) then

 set Ii left half of Ii

 Ij right half of Ij & declare “<’’

– else similar

• Let depth(xi) := log (1/length(Ii))

• After T comparisons, total depth ≤ O(T)

• At the end, can’t have 2 pts whose intervals
coincide/overlap [otherwise, answer could change]

 can’t have > n/2 pts with depth ≤ log(n/2)

 T ≥ Ω(total depth) ≥ Ω(n log n) Q.E.D.

Simple Ω(n log n) Pf (Generalized Version)

• When alg’m tests f(xi, xj) ? 0 for const-deg alg. fn f:

– take r grid subintervals Ii’ of Ii

 r grid subintervals Ij’ of Ij

– among the r2 grid cells Ii’ x Ij’,

 f = 0 intersects O(r) cells

 for suff. large const r,

 can set Ii one of Ii’

 Ij one of Ij’ s.t. sign(f) is determined

Ii

Ij

f=0

Simple Ω(n log n) Pf (Generalized Version)

• When alg’m tests f(xi, xj) ? 0 for const-deg alg. fn f:

– take r grid subintervals Ii’ of Ii

 r grid subintervals Ij’ of Ij

– among the r2 grid cells Ii’ x Ij’,

 f = 0 intersects O(r) cells

 for suff. large const r,

 can set Ii one of Ii’

 Ij one of Ij’ s.t. sign(f) is determined

• Note: extends to decision trees w. const-deg algebraic
test fns w. any const # of args [Moran,Snir,Manber’85 had
diff. pf for arbitrary test fns w. const # of args, via Ramsey
theory, but it’s not instance-specific…]

Ii

Ij

f=0

An Instance-Specific Lower Bd Pf for
Convex Hull

• Note: holds for decision trees w. multilinear test fns w.
const # of args

• Ex: f((x1,y1),(x2,y2)) = x1y2 + x2y1 is multilinear

 f((x1,y1),(x2,y2)) = x1y1 + x2y2 is not

 the determinant is…

Instance-Specific Lower Bd Pf (Cont’d)

• Partition Thm: [Willard’82,…,Matoušek’91]

 Any point set S can be partitioned into ~ r subsets Si of
size n/r, each enclosed in (disjoint) cell Δi of size Õ(1)
s.t. each line crosses O(r1-ε) cells

Instance-Specific Lower Bd Pf (Cont’d)

• Recurse partition tree

where each cell at depth k contains n/rk pts

i.e., depth of cell = logr (n/(# pts))

• Make cell Δ a leaf if Δ is inside convex hull(S)

• Let P** be the partition formed by the leaves

• Pf by adversary argument again

• Maintain a cell Δp for each pt p in S (initially, Δp = root)

Instance-Specific Lower Bd Pf (Cont’d)

• When alg’m tests f(p,q) ? 0:

– take the ~ r subcells Δp’ of Δp

 ~ r subcells Δq’ of Δq

– among the ~ r2 cells Δp’ x Δq’, f = 0 intersects Õ(r2-ε)
cells [since f is multilinear & line crossing # is O(r1-ε)]

 can set Δp one of Δp’

 Δq one of Δq’ s.t. sign(f) is determined

• When Δp = a leaf, fix p to an unassigned pt in S Δp

• Minor note: don’t let > |S Δ’| pts go under a child Δ’ …

 At the end, get a permutation of S

Instance-Specific Lower Bd Pf (Cont’d)

• Let depth(p) := depth of Δp in partition tree

• After T comparisons, total depth ≤ O(T)

• At the end, each Δp must be a leaf [otherwise convex hull
could change]

 T ≥ Ω(total depth)

 ≥ Ω(∑leaf Δ |S Δ| depth(Δ))

 ≥ Ω(∑leaf Δ |S Δ| log (n/|S Δ|))

 = Ω(H(P**)) ≥ Ω(H(S)) Q.E.D.

4. Other Applications

3D Convex Hull

• Lower bd pf: same

• Upper bd: a new alg’m, using partition trees combined
w. grouping [Chan’95] …

2D/3D Maxima

• Similar, except simpler: partition trees can be replaced
by k-d trees

2D/3D Red-Blue Dominance

• Consider a partition P of S into red/blue subsets Si s.t.

 each red subset can be enclosed in a box where every
pt in the box is dominated by exactly the same set of
blue pts in S, & vice versa

• H(S) := min H(P) over all such partitions P

easy instance

2D Orthogonal Segment Intersection

• Lift each horizontal/vertical segment s into a red/blue
point s* in 3D…

easy instance

2D Offline Point Location

• Consider a partition P of S into subsets Si s.t.

 each subset can be enclosed in a triangle completely
inside one region

• H(S) := min H(P) over all such partitions P

2D Point Location Queries

 Get a data structure with average query time O(H(S)/n),
i.e., O(entropy)

• Note: re-proves known “distribution-sensitive” data
structures [Arya,Malamatos,Mount’00; Iacono’01; etc.]

• Note: gets new distribution-sensitive data structures
for many other query problems, e.g., 2D orthogonal range
counting [answers open problem by Dujmovic,Howat,Morin’09], …

Conclusions

• Specific open problems:

– Nonorthogonal red-blue segment intersection

– Diameter/width of a 2D point set

– Beyond multilinear decision trees

• Other instance-optimal/adaptive models? [order-dependent?]

• Problems w. worst-case complexity worse than n log n??
[e.g., offline simplex range search]

