Instance-Optimal Geometric Algorithms

Timothy Chan
School of CS
U. Waterloo

joint work with
Peyman Afshani (MADALGO, Aarhus U) Jérémy Barbay (U. Chile)

Theme

- Beyond worst-case analysis
- "Adaptive" algorithms
[a theory w. connections to output-sensitive alg'ms, average-case alg'ms, decision-tree lower bds, partition trees, adversary arguments, entropy, distribution-sensitive data structures...]

Example: 2D Convex Hull

Example: 2D Convex Hull

- Background:
- $O(n \log n)$ time alg'ms
- Graham's scan'72
- Divide\&conquer [Preparata,Hong'77]
- Randomized incremental [Clarkson,Shor'88]
- $\Omega(n \log n)$ lower bd [Ben-Or'83]

2D Convex Hull (Cont'd)

- "Output-Sensitive" Alg'ms
- O(nh) time
- Jarvis' march'73
- O(n log h) time
- Kirkpatrick,Seidel'86 ["ultimate... ?"]
- Clarkson,Shor'88 [random sampling]
- Chan,Snoeyink,Yap'95 [prune,divide\&conquer]
- Chan'95 [grouping+Jarvis]
- $\Omega(n \log h)$ lower bd

2D Convex Hull (Cont'd)

- "Average-Case" Alg'ms
- $O(n)$ expected time for
- uniformly distributed pts inside square/disk/...
- normally distributed pts [Bentley,Shamos'78]

2D Convex Hull (Cont'd)

- Easy vs. Hard Point Sets

New Result for 2D Convex Hull

- An adaptive alg'm that is optimal in terms of every parameter imaginable!

New Result for 2D Convex Hull

- An adaptive alg'm that is optimal for every point set !!

New Result for 2D Convex Hull

- An adaptive alg'm that is optimal for every instance !!

Def'n of "Instance Optimality" (First Attempt)

- Let $T_{A}(S)=$ runtime of alg'm A on input sequence S
- Let OPT(S) $=\min T_{A}(S)$ over all alg'ms A
- A is instance-optimal if $T_{A}(S) \leq O(1) \cdot O P T(S) \forall S$

Def'n of "Instance Optimality" (First Attempt)

- Let $T_{A}(S)=$ runtime of alg'm A on input sequence S
- Let $O P T(S)=\min T_{A}(S)$ over all alg'ms A
- A is instance-optimal if $T_{A}(S) \leq O(1) \cdot O P T(S) \forall S$
... but not possible for 2D convex hull !!
[for every input sequence S, there is an alg'm with runtime $O(n)$ on S]

Our Def'n of "Instance Optimality"

- Let $T_{A}(S)=$ max runtime of alg'm A over all permutations of input set S
- Let $O P T(S)=\min T_{A}(S)$ over all alg'ms A
- A is instance-optimal in the order-oblivious setting if $T_{A}(S) \leq O(1) \cdot O P T(S) \forall S$

Our Def'n of "Instance Optimality"

- Let $T_{A}(S)=$ max runtime of alg'm A over all permutations of input set S
- Let $O P T(S)=\min T_{A}(S)$ over all alg'ms A
- A is instance-optimal in the order-oblivious setting if $T_{A}(S) \leq O(1) \cdot O P T(S) \forall S$
[subsumes output-sensitive alg'ms, \& any alg'm that does not exploit input order, etc.]

Our Def'n of "Instance Optimality" (Slightly Stronger Version)

- Let $t_{A}(S)=$ average runtime of alg'm A over all permutations of input set S
- Let $\operatorname{opt}(S)=\min _{A}(S)$ over all alg'ms A
- A is instance-optimal in the random-order setting if $T_{A}(S) \leq O(1) \cdot o p t(S) \forall S$

Our Def'n of "Instance Optimality" (Slightly Stronger Version)

- Let $t_{A}(S)=$ average runtime of alg'm A over all permutations of input set S
- Let $\operatorname{opt}(S)=\min _{A}(S)$ over all alg'ms A
- A is instance-optimal in the random-order setting if $T_{A}(S) \leq O(1) \cdot o p t(S) \forall S$
[subsumes average-case alg'ms for any distribution, \& randomized incremental alg'ms, etc.]

Related Work on Instance Optimality

- Fagin,Lotem,Naor'O3 [in database]
- Competitive binary search trees [Sleator,Tarjan'85's "dynamic optimality conjecture"]
- Competitive analysis of on-line alg'ms
- Various adaptive alg'ms, e.g.,
[Demaine,Lopez-Ortiz,Munro'00: set union/intersection;
Baran,Demaine'04: approx problems about "black-box" curves; etc.]

New Result for 2D Convex Hull

- An alg'm that is instance-optimal in the order-oblivious (\& random-order) setting

Outline

1. What is OPT(S)?

2. Upper Bound
3. Lower Bound
4. Applications to Other Problems

1. What is OPT(S)?

A Measure of Difficulty

- Given point set S of size n
- Consider a partition P of S into subsets S_{i} s.t. each subset can be enclosed in a triangle inside convex hull(S)
- Let $H(P):=\sum_{i}\left|S_{i}\right| \log \left(n /\left|S_{i}\right|\right)$

A Measure of Difficulty

- Given point set S of size n
- Consider a partition P of S into subsets S_{i} s.t. each subset can be enclosed in a triangle inside convex hull(S)
- Let $H(P):=\sum_{i}\left|S_{i}\right| \log \left(n /\left|S_{i}\right|\right)$

A Measure of Difficulty

- Given point set S of size n
- Consider a partition P of S into subsets S_{i} s.t. each subset can be enclosed in a triangle inside convex hull(S)
- Let $H(P):=\sum_{i}\left|S_{i}\right| \log \left(n /\left|S_{i}\right|\right)$

A Measure of Difficulty

- Given point set S of size n
- Consider a partition P of S into subsets S_{i} s.t. each subset can be enclosed in a triangle inside convex hull(S)
- Let $H(P):=\sum_{i}\left|S_{i}\right| \log \left(n /\left|S_{i}\right|\right)$
- Define the difficulty of S to be

$$
\begin{aligned}
H(S):= & \min H(P) \text { over all valid partitions } P \\
& \text { satisfying (*) }
\end{aligned}
$$

Connections

- Multiset sorting requires time $O\left(\sum_{i} n_{i} \log \left(n / n_{i}\right)\right)$ for multiplicities n_{i}
- Biased search trees require average query time $O\left(\sum_{i} p_{i} \log \left(1 / p_{i}\right)\right)$ (the entropy) for probabilities p_{i}
- $H(P)=\sum_{i}\left|S_{i}\right| \log \left(n /\left|S_{i}\right|\right)$ corresponds to the "entropy" of the partition P [after dividing by n]
- Sen,Gupta'99...

2. Upper Bound

Kirkpatrick,Seidel's Alg'm

UpperHull(S):

1. if $|S| \leq 2$ return ...
2. $x_{m}=$ median x in S
3. find hull edge pq ("bridge") at $x=x_{m}$ [by 2D LP]
4. prune all pts below pq
5. UpperHull(\{all pts left of $\left.x=x_{m}\right\}$)
6. UpperHull(\{all pts right of $\left.x=x_{m}\right\}$)

Kirkpatrick,Seidel's Alg'm (Slightly Modified)

UpperHull(S):
0. if $|S| \leq 2$ return ...

1. prune all pts below $a b$, where $a=$ leftmost $p t, b=$ rightmost $p \dagger$
2. $x_{m}=$ median x in S
3. find hull edge pq ("bridge") at $x=x_{m}$ [by 2D LP]
4. prune all pts below pq
5. UpperHull(\{all pts left of $\left.x=x_{m}\right\}$)
6. UpperHull(\{all pts right of $\left.x=x_{m}\right\}$)

Analysis

- At level k of recursion:

Analysis

- At level k of recursion:

- Let P be any valid partition
- Let S_{i} be any subset of P, enclosed in triangle Δ_{i}
$\Rightarrow \# p t s$ in S_{i} that survive level $k \leq \min \left\{\left|S_{i}\right|, 3 n / 2^{k}\right\}$
\Rightarrow total \# pts that survive level $k \leq O\left(\sum_{i} \min \left\{\left|S_{i}\right|, n / 2^{k}\right\}\right)$

Analysis (Cont'd)

- Runtime
$\leq O\left(\Sigma_{k} \sum_{i} \min \left\{\left|S_{i}\right|, n / 2^{k}\right\}\right)$
$=O\left(\sum_{i} \sum_{k} \min \left\{\left|S_{i}\right|, n / 2^{k}\right\}\right)$
$=O\left(\sum_{i}\left(\left|S_{i}\right|+\ldots+\left|S_{i}\right|+\left|S_{i}\right| / 2+\left|S_{i}\right| / 4+\ldots\right)\right)$
$\log \left(n /\left|S_{i}\right|\right)$ times
$=O\left(\sum_{i}\left|S_{i}\right| \log \left(n /\left|S_{i}\right|\right)\right)=O(H(P))$
\Rightarrow Runtime $\leq O\left(\min _{p} H(P)\right)=O(H(S))$

3. Lower Bound

Traditional $\Omega(n \log n)$ Pfs (via Topology)

- Van Emde Boas'80: linear decision trees [but convex hull not solvable in this model !]
- Yao'82: quadratic decision tree
- Steeles,Yao'82: const-deg algebraic decision trees [but not quite successful for convex hull...]
- Ben-Or'83: const-deg algebraic decision trees \& algebraic computation trees
... but none of these gives instance-specific lower bds!

A Different, Simple $\Omega(n \log n)$ Pf (No Topology Required !)

- Toy Problem: given n pts x_{1}, \ldots, x_{n} in R^{1}, are they distinct?
- Pf by adversary argument
- Simulate alg'm on unknown input
- Maintain an interval I_{i} for each x_{i} (initially $I_{i}=[0,1]$)

Simple $\Omega(n \log n) \operatorname{Pf}\left(\right.$ Cont'd $\left.^{\prime}\right)$

- When alg'm compares x_{i} ? x_{j} :
- if midpoint $\left(I_{i}\right)$ < midpoint $\left(I_{j}\right)$ then set $I_{i} \leftarrow$ left half of I_{i} $I_{j} \leftarrow$ right half of $I_{j} \&$ declare "く"
- else similar
- Let depth $\left(x_{i}\right):=\log \left(1 /\right.$ length $\left.\left(I_{i}\right)\right)$
- After T comparisons, total depth $\leq O(T)$
- At the end, can't have 2 pts whose intervals coincide/overlap [otherwise, answer could change]
\Rightarrow can't have $>n / 2$ pts with depth $\leq \log (n / 2)$
$\Rightarrow T \geq \Omega$ (total depth) $\geq \Omega(n \log n)$

Simple $\Omega(n \log n)$ Pf (Generalized Version)

- When alg'm tests $f\left(x_{i}, x_{j}\right)$? 0 for const-deg alg. $f n f:$
- take r grid subintervals I_{i}^{\prime} of I_{i}
\Rightarrow for suff. large const r,
r grid subintervals I_{j}^{\prime} of I_{j}
- among the r^{2} grid cells $I_{i}^{\prime} \times I_{j}{ }^{\prime}$, $f=0$ intersects $O(r)$ cells can set $I_{i} \leftarrow$ one of I_{i}^{\prime}

I_{j}
$I_{j} \leftarrow$ one of I_{j}^{\prime} s.t. $\operatorname{sign}(f)$ is determined

Simple $\Omega(n \log n)$ Pf (Generalized Version)

- When alg'm tests $f\left(x_{i}, x_{j}\right)$? 0 for const-deg alg. $f n f$:
- take r grid subintervals I_{i}^{\prime} of I_{i}
r grid subintervals I_{j}^{\prime} of I_{j}
- among the r^{2} grid cells $I_{i}^{\prime} \times I_{j}{ }^{\prime}$, $f=0$ intersects $O(r)$ cells

I_{j}
\Rightarrow for suff. large const r, can set $I_{i} \leftarrow$ one of I_{i}^{\prime}

$$
I_{j} \leftarrow \text { one of } I_{j}^{\prime} \text { s.t. } \operatorname{sign}(f) \text { is determined }
$$

- Note: extends to decision trees w. const-deg algebraic test fns w. any const \# of args [Moran,Snir,Manber' 85 had diff. pf for arbitrary test fns w. const \# of args, via Ramsey theory, but it's not instance-specific...]

An Instance-Specific Lower Bd Pf for Convex Hull

- Note: holds for decision trees w. multilinear test fns w. const \# of args
- Ex: $f\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=x_{1} y_{2}+x_{2} y_{1}$ is multilinear $f\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=x_{1} y_{1}+x_{2} y_{2}$ is no \dagger the determinant is...

Instance-Specific Lower Bd Pf (Cont'd)

- Partition Thm: [Willard'82,...,Matoušek'91]

Any point set S can be partitioned into $\sim r$ subsets S_{i} of size n / r, each enclosed in (disjoint) cell Δ_{i} of size $\tilde{O}(1)$ s.t. each line crosses $O\left(r^{1-\varepsilon}\right)$ cells

Instance-Specific Lower Bd Pf (Cont'd)

- Recurse \Rightarrow partition tree where each cell at depth k contains n / r^{k} pts i.e., depth of cell $=\log _{r}(n /(\#$ pts $)$)
- Make cell Δ a leaf if Δ is inside convex hull(S)
- Let $P^{* *}$ be the partition formed by the leaves
- Pf by adversary argument again
- Maintain a cell Δ_{p} for each pt p in S (initially, $\Delta_{p}=$ root)

Instance-Specific Lower Bd Pf (Cont'd)

- When alg'm tests $f(p, q)$? 0:
- take the $\sim r$ subcells Δ_{p}^{\prime} of Δ_{p} $\sim r$ subcells Δ_{q}^{\prime} of Δ_{q}
- among the $\sim r^{2}$ cells $\Delta_{p}^{\prime} \times \Delta_{q}^{\prime}, f=0$ intersects $\tilde{O}\left(r^{2-\varepsilon}\right)$ cells [since f is multilinear \& line crossing $\#$ is $O\left(r^{1-\varepsilon}\right)$]
\Rightarrow can set $\Delta_{p} \leftarrow$ one of Δ_{p}^{\prime}
$\Delta_{q} \leftarrow$ one of Δ_{q}^{\prime} s.t. $\operatorname{sign}(f)$ is determined
- When $\Delta_{p}=$ a leaf, fixp to an unassigned $p t$ in $S \cap \Delta_{p}$ - Minor note: don't let $>\left|S \cap \Delta^{\prime}\right|$ pts go under a child Δ^{\prime}...
\Rightarrow At the end, get a permutation of S

Instance-Specific Lower Bd Pf (Cont'd)

- Let depth $(\mathrm{p}):=$ depth of Δ_{p} in partition tree
- After T comparisons, total depth $\leq O(T)$
- At the end, each Δ_{p} must be a leaf [otherwise convex hull could change]
$\Rightarrow T \geq \Omega$ (total depth)
$\geq \Omega\left(\Sigma_{\text {leaf } \Delta}|S \cap \Delta| \operatorname{depth}(\Delta)\right)$
$\geq \Omega\left(\sum_{\text {leaf } \Delta}|S \cap \Delta| \log (n /|S \cap \Delta|)\right)$
$=\Omega\left(H\left(P^{* *}\right)\right) \geq \Omega(H(S))$
Q.E.D.

4. Other Applications

3D Convex Hull

- Lower bd pf: same
- Upper bd: a new alg'm, using partition trees combined w. grouping [Chan'95] ...

2D/3D Maxima

- Similar, except simpler: partition trees can be replaced by k-d trees

2D/3D Red-Blue Dominance

- Consider a partition P of S into red/blue subsets S_{i} s.t. each red subset can be enclosed in a box where every pt in the box is dominated by exactly the same set of blue pts in S, \& vice versa
- $H(S):=\min H(P)$ over all such partitions P

2D Orthogonal Segment Intersection

- Lift each horizontal/vertical segment s into a red/blue point s^{\star} in 3D...

2D Offline Point Location

- Consider a partition P of S into subsets S_{i} s.t. each subset can be enclosed in a triangle completely inside one region
- $H(S):=\min H(P)$ over all such partitions P

2D Point Location Queries

\Rightarrow Get a data structure with average query time $O(H(S) / n)$, i.e., O(entropy)

- Note: re-proves known "distribution-sensitive" data structures [Arya,Malamatos,Mount'00; Iacono'01; etc.]
- Note: gets new distribution-sensitive data structures for many other query problems, e.g., 2D orthogonal range counting [answers open problem by Dujmovic, Howat, Morin'09], ...

Conclusions

- Specific open problems:
- Nonorthogonal red-blue segment intersection
- Diameter/width of a 2D point set
- Beyond multilinear decision trees
- Other instance-optimal/adaptive models? [order-dependent?]
- Problems w. worst-case complexity worse than $n \log n$?? [e.g., offline simplex range search]

