Instance-Optimal Geometric Algorithms

> Timothy Chan School of CS U. Waterloo

joint work with Peyman Afshani (MADALGO, Aarhus U) Jérémy Barbay (U. Chile)

Theme

- Beyond worst-case analysis
- "Adaptive" algorithms

[a theory w. connections to output-sensitive alg'ms, average-case alg'ms, decision-tree lower bds, partition trees, adversary arguments, entropy, distribution-sensitive data structures...]

Example: 2D Convex Hull

Example: 2D Convex Hull

- Background:
 - O(n log n) time alg'ms
 - Graham's scan'72
 - Divide&conquer [Preparata,Hong'77]
 - Randomized incremental [Clarkson, Shor'88]
 - $\Omega(n \log n)$ lower bd [Ben-Or'83]

2D Convex Hull (Cont'd)

- "Output-Sensitive" Alg'ms
 - O(nh) time
 - Jarvis' march'73
 - O(n log h) time
 - Kirkpatrick, Seidel'86 ["ultimate...?"]
 - Clarkson, Shor'88 [random sampling]
 - Chan, Snoeyink, Yap'95 [prune, divide&conquer]
 - Chan'95 [grouping+Jarvis]
 - $\Omega(n \log h)$ lower bd

2D Convex Hull (Cont'd)

- "Average-Case" Alg'ms
 - O(n) expected time for
 - uniformly distributed pts inside square/disk/...
 - normally distributed pts [Bentley, Shamos'78]

2D Convex Hull (Cont'd)

• Easy vs. Hard Point Sets

 An adaptive alg'm that is optimal in terms of every parameter imaginable !

 An adaptive alg'm that is optimal for every point set !!

 An adaptive alg'm that is optimal for every instance !!

Def'n of "Instance Optimality" (First Attempt)

- Let $T_A(S)$ = runtime of alg'm A on input sequence S
- Let $OPT(S) = \min T_A(S)$ over all alg'ms A
- A is instance-optimal if $T_A(S) \leq O(1) \cdot OPT(S) \forall S$

Def'n of "Instance Optimality" (First Attempt)

- Let $T_A(S)$ = runtime of alg'm A on input sequence S
- Let $OPT(S) = \min T_A(S)$ over all alg'ms A
- A is instance-optimal if $T_A(S) \leq O(1) \cdot OPT(S) \forall S$

... but not possible for 2D convex hull !! [for every input sequence S, there is an alg'm with runtime O(n) on S]

Our Def'n of "Instance Optimality"

- Let $T_A(S) = \max \text{ runtime of alg'm } A \text{ over all}$ permutations of input set S
- Let $OPT(S) = \min T_A(S)$ over all alg'ms A
- A is instance-optimal in the order-oblivious setting if $T_A(S) \leq O(1) \cdot OPT(S) \forall S$

Our Def'n of "Instance Optimality"

- Let $T_A(S) = \max \text{ runtime of alg'm } A \text{ over all}$ permutations of input set S
- Let $OPT(S) = \min T_A(S)$ over all alg'ms A
- A is instance-optimal in the order-oblivious setting if $T_A(S) \leq O(1) \cdot OPT(S) \forall S$

[subsumes output-sensitive alg'ms, & any alg'm that does not exploit input order, etc.]

Our Def'n of "Instance Optimality" (Slightly Stronger Version)

- Let $t_A(S)$ = average runtime of alg'm A over all permutations of input set S
- Let $opt(S) = min t_A(S)$ over all alg'ms A
- A is instance-optimal in the random-order setting if $T_A(S) \leq O(1) \cdot opt(S) \forall S$

Our Def'n of "Instance Optimality" (Slightly Stronger Version)

- Let $t_A(S)$ = average runtime of alg'm A over all permutations of input set S
- Let $opt(S) = min t_A(S)$ over all alg'ms A
- A is instance-optimal in the random-order setting if $T_A(S) \leq O(1) \cdot opt(S) \forall S$

[subsumes average-case alg'ms for any distribution, & randomized incremental alg'ms, etc.]

Related Work on Instance Optimality

- Fagin,Lotem,Naor'03 [in database]
- Competitive binary search trees [Sleator, Tarjan'85's "dynamic optimality conjecture"]
- Competitive analysis of on-line alg'ms
- Various adaptive alg'ms, e.g., [Demaine,Lopez-Ortiz,Munro'00: set union/intersection; Baran,Demaine'04: approx problems about "black-box" curves; etc.]

 An alg'm that is instance-optimal in the order-oblivious (& random-order) setting

Outline

- 1. What is OPT(S)?
- 2. Upper Bound
- 3. Lower Bound
- 4. Applications to Other Problems

1. What is OPT(S)?

- Given point set S of size n
- Consider a partition P of S into subsets S_i s.t.
 each subset can be enclosed in a triangle inside (*) convex hull(S)
- Let $H(P) := \sum_{i} |S_i| \log (n/|S_i|)$

- Given point set S of size n
- Consider a partition P of S into subsets S_i s.t.
 each subset can be enclosed in a triangle inside (*) convex hull(S)
- Let $H(P) := \sum_{i} |S_i| \log (n/|S_i|)$

- Given point set S of size n
- Consider a partition P of S into subsets S_i s.t.
 each subset can be enclosed in a triangle inside (*) convex hull(S)
- Let $H(P) := \sum_{i} |S_i| \log (n/|S_i|)$

- Given point set S of size n
- Consider a partition P of S into subsets S_i s.t.
 each subset can be enclosed in a triangle inside (*) convex hull(S)
- Let $H(P) := \sum_{i} |S_{i}| \log (n/|S_{i}|)$
- Define the difficulty of S to be
 H(S) := min H(P) over all valid partitions P satisfying (*)

Connections

- Multiset sorting requires time $O(\sum_i n_i \log (n/n_i))$ for multiplicities n_i
- Biased search trees require average query time $O(\sum_i p_i \log (1/p_i))$ (the entropy) for probabilities p_i
- $H(P) = \sum_{i} |S_i| \log (n/|S_i|)$ corresponds to the "entropy" of the partition P [after dividing by n]
- Sen,Gupta'99...

2. Upper Bound

Kirkpatrick,Seidel's Alg'm

- 3. find hull edge pq ("bridge") at $x = x_m$ [by 2D LP]
- 4. prune all pts below pq
- 5. UpperHull({all pts left of $x = x_m$ })
- 6. UpperHull({all pts right of $x = x_m$ })

Kirkpatrick, Seidel's Alg'm (Slightly Modified)

UpperHull(S):

- 0. if $|S| \leq 2$ return ...
- prune all pts below ab, where
 a = leftmost pt, b = rightmost pt
- 2. x_m = median x in S
- 3. find hull edge pq ("bridge") at $x = x_m$ [by 2D LP]
- 4. prune all pts below pq
- 5. UpperHull({all pts left of $x = x_m$ })
- 6. UpperHull({all pts right of $x = x_m$ })

Analysis

• At level k of recursion:

Analysis

• At level k of recursion:

- Let P be any valid partition
- Let S_i be any subset of P, enclosed in triangle Δ_i
- ⇒ # pts in S_i that survive level k \leq min { |S_i|, 3n/2^k } ⇒ total # pts that survive level k \leq O(Σ_i min {|S_i|, n/2^k})

Analysis (Cont'd)

- Runtime
 - $\leq O(\sum_{k} \sum_{i} \min\{|S_{i}|, n/2^{k}\})$
 - = $O(\sum_{i} \sum_{k} \min\{|S_{i}|, n/2^{k}\})$
 - = $O(\sum_{i} (|S_{i}| + ... + |S_{i}| + |S_{i}|/2 + |S_{i}|/4 + ...))$ log (n/|S_i|) times
 - = $O(\sum_{i} |S_{i}| \log (n/|S_{i}|)) = O(H(P))$

 \Rightarrow Runtime \leq O(min_P H(P)) = O(H(S))

3. Lower Bound

Traditional $\Omega(n \log n)$ Pfs (via Topology)

- Van Emde Boas'80: linear decision trees [but convex hull not solvable in this model !]
- Yao'82: quadratic decision tree
- Steeles, Yao'82: const-deg algebraic decision trees [but not quite successful for convex hull...]
- Ben-Or'83: const-deg algebraic decision trees
 & algebraic computation trees

... but none of these gives instance-specific lower bds !

A Different, Simple Ω(n log n) Pf (No Topology Required !)

- Toy Problem: given n pts $x_1, ..., x_n$ in \mathbb{R}^1 , are they distinct?
- Pf by adversary argument
- Simulate alg'm on unknown input
- Maintain an interval I_i for each x_i (initially $I_i = [0,1]$)

Simple $\Omega(n \log n) Pf$ (Cont'd)

- When alg'm compares x_i ? x_j :

 if midpoint(I_i) < midpoint(I_j) then
 set I_i ← left half of I_i
 I_j ← right half of I_j & declare "<"
 else similar
- Let depth $(x_i) := \log (1/\text{length}(I_i))$
- After T comparisons, total depth $\leq O(T)$
- At the end, can't have 2 pts whose intervals coincide/overlap [otherwise, answer could change]

Q.E.D.

- \Rightarrow can't have > n/2 pts with depth $\leq \log(n/2)$
- \Rightarrow T $\geq \Omega$ (total depth) $\geq \Omega$ (n log n)

Simple $\Omega(n \log n)$ Pf (Generalized Version)

- When alg'm tests $f(x_i, x_j) ? 0$ for const-deg alg. fn f:
 - take r grid subintervals I'_i of I'_i r grid subintervals I'_j of I'_j
 - among the r² grid cells I_i' x I_j',
 f = 0 intersects O(r) cells

Ij

f=0

Simple $\Omega(n \log n)$ Pf (Generalized Version)

- When alg'm tests $f(x_i, x_j) ? 0$ for const-deg alg. fn f:
 - take r grid subintervals I'_i of I_i r grid subintervals I'_j of I_j
 - among the r² grid cells I_i' x I_j',
 f = 0 intersects O(r) cells

- $\Rightarrow \text{ for suff. large const r,} \qquad I_i \\ \text{ can set } I_i \leftarrow \text{ one of } I_i' \\ I_j \leftarrow \text{ one of } I_j' \text{ s.t. sign(f) is determined}$
- Note: extends to decision trees w. const-deg algebraic test fns w. any const # of args [Moran,Snir,Manber'85 had diff. pf for arbitrary test fns w. const # of args, via Ramsey theory, but it's not instance-specific...]

An Instance-Specific Lower Bd Pf for Convex Hull

- Note: holds for decision trees w. multilinear test fns w. const # of args
- Ex: $f((x_1,y_1),(x_2,y_2)) = x_1y_2 + x_2y_1$ is multilinear $f((x_1,y_1),(x_2,y_2)) = x_1y_1 + x_2y_2$ is not the determinant is...

Partition Thm: [Willard'82,...,Matoušek'91]

Any point set S can be partitioned into ~ r subsets S_i of size n/r, each enclosed in (disjoint) cell Δ_i of size $\tilde{O}(1)$ s.t. each line crosses $O(r^{1-\epsilon})$ cells

- Recurse ⇒ partition tree where each cell at depth k contains n/r^k pts
 i.e., depth of cell = log_r (n/(# pts))
- Make cell Δ a leaf if Δ is inside convex hull(S)
- Let P** be the partition formed by the leaves
- Pf by adversary argument again
- Maintain a cell Δ_p for each pt p in S (initially, Δ_p = root)

- When alg'm tests f(p,q) ? 0:
 - take the ~ r subcells Δ_p' of Δ_p ~ r subcells Δ_q' of Δ_q
 - among the ~ r^2 cells $\Delta_p' \times \Delta_q'$, f = 0 intersects $\tilde{O}(r^{2-\epsilon})$ cells [since f is multilinear & line crossing # is $O(r^{1-\epsilon})$]

$$\Rightarrow \text{ can set } \Delta_p \leftarrow \text{ one of } \Delta_p'$$

$$\Delta_q \leftarrow \text{ one of } \Delta_q' \quad \text{ s.t. sign(f) is determined}$$

- When Δ_p = a leaf, fix p to an unassigned pt in S $\cap \Delta_p$
- Minor note: don't let > $|S \cap \Delta'|$ pts go under a child Δ' ...
- \Rightarrow At the end, get a permutation of S

- Let depth(p) := depth of Δ_p in partition tree
- After T comparisons, total depth $\leq O(T)$
- At the end, each $\Delta_{\rm p}$ must be a leaf [otherwise convex hull could change]

4. Other Applications

3D Convex Hull

- Lower bd pf: same
- Upper bd: a new alg'm, using partition trees combined w. grouping [Chan'95] ...

2D/3D Maxima

 Similar, except simpler: partition trees can be replaced by k-d trees

2D/3D Red-Blue Dominance

- Consider a partition P of S into red/blue subsets S_i s.t.
 each red subset can be enclosed in a box where every pt in the box is dominated by exactly the same set of blue pts in S, & vice versa
- H(S) := min H(P) over all such partitions P

2D Orthogonal Segment Intersection

 Lift each horizontal/vertical segment s into a red/blue point s* in 3D...

2D Offline Point Location

- Consider a partition P of S into subsets S_i s.t.
 each subset can be enclosed in a triangle completely inside one region
- H(S) := min H(P) over all such partitions P

2D Point Location Queries

- ⇒ Get a data structure with average query time O(H(S)/n), i.e., O(entropy)
- Note: re-proves known "distribution-sensitive" data structures [Arya, Malamatos, Mount'00; Iacono'01; etc.]
- Note: gets new distribution-sensitive data structures for many other query problems, e.g., 2D orthogonal range counting [answers open problem by Dujmovic,Howat,Morin'09], ...

Conclusions

- Specific open problems:
 - Nonorthogonal red-blue segment intersection
 - Diameter/width of a 2D point set
 - Beyond multilinear decision trees
- Other instance-optimal/adaptive models? [order-dependent?]
- Problems w. worst-case complexity worse than n log n??
 [e.g., offline simplex range search]