Mihai's Work in Computational Geometry

> Timothy Chan School of CS U of Waterloo

Talk Outline

- 1. Point Location [C.&P., FOCS'06]
- 2. Offline Point Location [C.&P., STOC'07]
- 3. Offline Orthogonal Range Counting [C.&P., SODA'10]
- 4. Orthogonal Range Reporting [C.&Larsen&P., SoCG'11]

Talk Outline

- 1. Point Location [C.&P., FOCS'06]
- 2. Offline Point Location [C.&P., STOC'07]
- 3. Offline Orthogonal Range Counting [C.&P., SODA'10]
- 4. Orthogonal Range Reporting [C.&Larsen&P., SoCG'11]

 Preprocess a planar subdivision with *n* line segments s.t. given query point *q*, find which region contains *q*

 Preprocess a planar subdivision with *n* line segments s.t. given query point *q*, find which region contains *q*

 Standard result in CG: O(n) space, O(lg n) query time
 [Dobkin&Lipton'76, Lee&Preparata'77, Lipton&Tarjan'77*, Kirkpatrick'83*, Preparata'83, Edelsbrunner&Guibas&Stolfi'86*, Cole'86, Sarnak&Tarjan'86*, Mulmuley'90*, ...]

Applications:

- 2D nearest neighbor search in O(n) space, $O(\lg n)$ time

 – explains why many CG problems, e.g., 2D Voronoi diagram, 3D convex hull, 2D line segment intersection, etc., etc., etc. have O(n lg n) alg'ms

• The surprise:

The problem can be solved in sublogarithmic time!
 ... in the word RAM (or "transdichotomous") model

• Assumptions:

- RAM with word of size w
- input coordinates are integers in $\{0, ..., U\}$
- $-w \ge \lg n \text{ and } w \ge \lg U$
- standard ops on w-bit integers (<, +, -, x, /, bitwise-&, <<, >>) take unit time

- Example: 1D predecessor search
 - O(n) space, $O(\sqrt{\lg n/\lg \lg n})$ time [fusion tree+Beame&Fich] or $O(\lg \lg U)$ time [vEB tree]
- Our results in 2D:

-
$$O(n)$$
 space, $O(\lg n / \lg \lg n)$ time
or $O(\sqrt{\lg U / \lg \lg U})$ time

implies improved alg'ms for 2D Voronoi diagram,
 3D convex hull, 2D line segment intersection, etc.
 by known CG techniques

Key Subproblem: Point Location in a Slab

• Idea: *b*-ary search

Key Recurrence

$$Q(n, U_L, U_R) \leq Q_0(O(b), H, H) + \max\left\{Q\left(\frac{n}{b}, U_L, U_R\right), Q\left(n, \frac{U_L}{H}, U_R\right), Q\left(n, U_L, \frac{U_R}{H}\right)\right\} + O(1)$$

- Base case: $Q_0(b, H, H) = O(1)$ if $b \lg H \approx w$ by packing multiple input line segments into a word
- $\Rightarrow Q(n, U, U) = O(\log_b n + \log_H U)$ $= O(\lg n / \lg b + \lg U / \lg H) = O(\lg n / \lg b + b)$
- Set $b = (\lg n)^{\varepsilon} \Rightarrow O(\lg n / \lg \lg n)$

Talk Outline

- 1. Point Location [C.&P., FOCS'06]
- 2. Offline Point Location [C.&P., STOC'07]
- 3. Offline Orthogonal Range Counting [C.&P., SODA'10]
- 4. Orthogonal Range Reporting [C.&Larsen&P., SoCG'11]

Offline 2D Point Location Problem

- Offline (or "batched") setting: what if all n query points are given in advance?
- The applications to 2D Voronoi diagram, 3D convex hull, 2D line segment intersection, etc. only need the offline case

Offline 2D Point Location Problem

- Example: 1D predecessor search online queries $O(\sqrt{\lg n}/\lg \lg n)$ or $O(\lg \lg U)$ offline queries $O(\sqrt{\lg \lg n})$ [Han&Thorup] (since offline predecessor search \Rightarrow sorting)
- Our result in 2D:

online queries

offline queries

$$O(\lg n / \lg \lg n)$$
 or $O(\sqrt{\lg U / \lg \lg U})$
 $2^{O(\sqrt{\lg \lg n})}$

New Key Recurrence

$$\begin{aligned} Q(n, U_L, U_R) &\leq Q(O(b), H, H) + \\ \max\left\{Q\left(\frac{n}{b}, U_L, U_R\right), Q\left(n, \frac{U_L}{H}, U_R\right), Q\left(n, U_L, \frac{U_R}{H}\right)\right\} \\ &+ \tilde{O}(\left(\lg U_L + \lg U_R\right)/w) \end{aligned}$$

by packing multiple query points into a word

$$\Rightarrow Q(n, U, U) = 2^{O(\sqrt{\lg \lg n})}$$

Remarks

- Related (vague) question: best word-RAM sorting alg'm that doesn't "rely on" hashing?
- For 2D Voronoi diagrams specifically: can do much better, in $O(\operatorname{sort}(n)) = O(n\sqrt{\lg \lg n})$ time [Buchin&Mulzer, FOCS'09]
- Other word-RAM results in CG:
 - dynamic 2D convex hull [Demaine&P., SoCG'07], ...

Talk Outline

- 1. Point Location [C.&P., FOCS'06]
- 2. Offline Point Location [C.&P., STOC'07]
- 3. Offline Orthogonal Range Counting [C.&P., SODA'10]
- 4. Orthogonal Range Reporting [C.&Larsen&P., SoCG'11]

2D Orthogonal Range Searching Problem

0

- Preprocess n points in 2D s.t. given a query (axisaligned) rectangle q,
 - report all points inside q
 - count # points inside q
 - decide if q is empty of points

 Textbook result: O(n lg n) space, O(lg n) time (range tree)

2D Orthogonal Range Counting

• Best known result:

O(n) space, $O(\lg n / \lg \lg n)$ time (optimal)

- What if queries are offline?
- Offline 2D range counting \Rightarrow dynamic 1D range counting (or "rank queries"): $O(\lg n / \lg \lg n)$ time [Dietz'88]
- Our result in 2D: offline queries

 $O(\sqrt{\lg n})$ time

Problem: Given a permutation *a*₁, ..., *a*_n of {1, ..., *n*}, count # (*i*, *j*) with *i* < *j* & *a*_i > *a*_i

- Standard homework exercise: $O(n \lg n)$ time
- Inversion counting \Rightarrow 2D range counting by considering points (*i*, *a_i*)

- Problem (slightly generalized): Given sequence
 S = (a₁, ..., a_n), where each element in {1, ..., U}
 appears n/U times, count # (i, j) with i < j & a_i > a_j
- Idea: *B*-way divide&conquer

 $k\left(\frac{U}{R}\right)$

Problem (slightly generalized): Given sequence
 S = (a₁, ..., a_n), where each element in {1, ..., U}
 appears n/U times, count # (i, j) with i < j & a_i > a_i

1. For each
$$k = 1, ..., B$$
,
recurse in the subsequence of *S* containing
all elements in $\{(k - 1) \left(\frac{U}{B}\right) + 1, ..., k($
2. Recurse in $\left\langle \left[a_1/(\frac{U}{B})\right], ..., \left[a_n/(\frac{U}{B})\right] \right\rangle$
 $\Rightarrow T(n, U) \leq BT\left(\frac{n}{B}, \frac{U}{B}\right) + T(n, B) + O(n)$

$$\Rightarrow T(n,U) \le B T\left(\frac{n}{B}, \frac{U}{B}\right) + T(n,B) + O(n)$$

• Example (B = 2): $T(n, U) \le 2T\left(\frac{n}{2}, \frac{U}{2}\right) + O(n)$ $\Rightarrow T(n, U) = O(n \lg U)$

• Hypothetical: if T(n, B) = O(n) for a larger B, $\Rightarrow T(n, U) = O(n \log_B U)...$

• Example
$$(B = 2)$$
: $T(n, U) \le 2 T\left(\frac{n}{2}, \frac{U}{2}\right) + O(n (\lg U)/w)$
by word packing
 $\Rightarrow T(n, U) = O(n \lg U (\lg U)/w)$
 $\Rightarrow T(n, 2^{\sqrt{w}}) = O(n)$

• Now: set $B = 2^{\sqrt{w}}$

 $\Rightarrow T(n, U) = O(n \log_B U) = O(n \lg U / \sqrt{w})$ $= O(n \sqrt{\lg U})$

Remarks

- Online dynamic 1D rank queries:
 O(lg n/lg lg n) query time,
 O((lg n)^{1/2+ε}) update time
 [Dietz'88 had O(lg n/lg lg n) query & update]
- Offline orthogonal range counting in d dims: $O(n(\lg n)^{d-2+1/d})$ time

Talk Outline

- 1. Point Location [C.&P., FOCS'06]
- 2. Offline Point Location [C.&P., STOC'07]
- 3. Offline Orthogonal Range Counting [C.&P., SODA'10]
- 4. Orthogonal Range Reporting [C.&Larsen&P., SoCG'11]

2D Orthogonal Range Reporting

• Previous results – long story:

- Lueker/Willard'78: $O(n \lg n)$ space, $O(\lg n + k)$ time (range trees)
- Chazelle [FOCS'85]:

 $O(n(\lg n)^{\varepsilon})$ space, $O(\lg n + k)$ time $O(n \lg \lg n)$ space, $O(\lg n + k \lg \lg n)$ time O(n) space, $O(\lg n + k(\lg n)^{\varepsilon})$ time

- Overmars'88: $O(n \lg n)$ space, $O(\lg \lg U + k)$ time
- Alstrup&Brodal&Rauhe [FOCS'00]:

 $O(n(\lg n)^{\varepsilon})$ space, $O(\lg \lg U + k)$ time

- $O(n \lg \lg n)$ space, $O((\lg \lg U)^2 + k \lg \lg U)$ time
- Nekrich'07: O(n) space, $O(\lg U / \lg \lg U + k(\lg U)^{\varepsilon})$ time

• Our result:

 $O(n \lg \lg n)$ space, $O((1 + k) \lg \lg U)$ time O(n) space, $O((1 + k)(\lg U)^{\varepsilon})$ time

2D Orthogonal Range Emptiness (k = 0)

- Previous results short version:
 - Alstrup&Brodal&Rauhe [FOCS'00]: $O(n(\lg n)^{\varepsilon})$ space, $O(\lg \lg U)$ time $O(n \lg \lg n)$ space, $O((\lg \lg U)^2)$ time
- Our result:

$$O(n \lg \lg n)$$
 space, $O(\lg \lg U)$ time

Idea: go back to standard range trees!

- Range emptiness query \Rightarrow 1D range min/max queries
 - + predecessor search at a node
- Save space by using succinct data structures...

- Subproblem ("Ball Inheritance"): encode range tree
 s.t. given any node v & index i, can select i-th element
 of the list at v
- Solution: use known succinct "rank/select" data structures for strings...

- Subproblem ("Ball Inheritance"): encode range tree
 s.t. given any node v & index i, can select i-th element
 of the list at v
- $\Rightarrow O(n \lg \lg n)$ space, $O(\lg \lg n)$ time

- One final idea: for predecessor search on a list, there is a data structure (based on vEB tree+fusion tree) which uses sublinear space!
- ... provided there is an oracle that gives access to the *i*-th smallest element of the list for any given *i*
- Query time = $O(\lg \lg U)$ + time for O(1) oracle calls

Remark

- Nekrich&Navarro [SWAT'12]: applies this approach to 1D range successor & 2D sorted orthogonal range reporting
- C.&Wilkinson [SODA'13]: applies this approach to 2D output-sensitive orthogonal range counting & approximate orthogonal range counting...

Open Problems

- Prove lower bounds!
 - (online) 2D point location in $\Omega(\lg n/\lg \lg n)$ or $\Omega(\sqrt{\lg U/\lg \lg U})$ time??
 - (online) dynamic 1D rank queries with polylog query time: $\Omega(\sqrt{\lg n})$ update time??
 - 2D orthogonal range emptiness (or just ball inheritance) with lg lg n query time:
 Ω(n lg lg n) space??
 - 4D orthogonal range emptiness with n polylog n space: Ω(lg n) or O(lg n/lg lg n) query time??