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2D Point Location Problem 

• Preprocess a planar subdivision  

   with 𝑛 line segments s.t.  

 given query point 𝑞,  

 find which region contains 𝑞 

 

q 



2D Point Location Problem 

• Preprocess a planar subdivision  

   with 𝑛 line segments s.t.  

 given query point 𝑞,  

 find which region contains 𝑞 

 

 

• Standard result in CG: 𝑂(𝑛) space, 𝑂(lg𝑛) query time 

    [ Dobkin&Lipton'76, Lee&Preparata'77, Lipton&Tarjan'77*,       

      Kirkpatrick'83*, Preparata'83, Edelsbrunner&Guibas&Stolfi'86*, 

      Cole'86, Sarnak&Tarjan'86*, Mulmuley'90*, ... ] 

q 



2D Point Location Problem 

• Applications: 
 

– 2D nearest neighbor search in 𝑂(𝑛)space, 𝑂(lg𝑛) 
time 

 

 

 

 

– explains why many CG problems, e.g., 2D Voronoi 

diagram, 3D convex hull, 2D line segment 

intersection, etc., etc., etc. have 𝑂(𝑛lg𝑛)alg'ms 

q 



2D Point Location Problem 

• The surprise: 

– The problem can be solved in sublogarithmic time! 

 ... in the word RAM (or “transdichotomous”) model 

 

• Assumptions:  

– RAM with word of size 𝑤 

– input coordinates are integers in *0, … , 𝑈+  

– 𝑤 ≥ lg𝑛and 𝑤 ≥ lg𝑈 

– standard ops on 𝑤-bit integers (<, +, -, x, /,    

bitwise-&, <<, >>) take unit time 

 



2D Point Location Problem 

• Example: 1D predecessor search 

– 𝑂(𝑛) space, 𝑂( lg𝑛/lglg𝑛)time [fusion tree+Beame&Fich]  

                            or 𝑂(lglg𝑈)time      [vEB tree] 

 

• Our results in 2D: 

– 𝑂(𝑛) space, 𝑂(lg𝑛/lglg𝑛)time  

                            or 𝑂( lg𝑈/lglg𝑈)time 
 

– implies improved alg'ms for 2D Voronoi diagram, 

3D convex hull, 2D line segment intersection, etc. 

by known CG techniques 



Key Subproblem: Point Location in a Slab 

 

 

 

 

 

 

 

 
 

• Idea:  𝑏-ary search 

q 



Key Recurrence 

𝑄 𝑛, 𝑈𝐿, 𝑈𝑅 
≤ 𝑄0(𝑂(𝑏), 𝐻, 𝐻) + 

max 𝑄
𝑛

𝑏
, 𝑈𝐿, 𝑈𝑅 , 𝑄 𝑛,

𝑈𝐿

𝐻
,𝑈𝑅 , 𝑄 𝑛, 𝑈𝐿,

𝑈𝑅

𝐻
 

        +𝑂(1) 
 

• Base case: 𝑄0(𝑏, 𝐻, 𝐻) = 𝑂 1  if 𝑏lg𝐻 ≈ 𝑤 

 by packing multiple input line segments into a word 
 

   𝑄(𝑛, 𝑈, 𝑈) = 𝑂(log𝑏𝑛 + log𝐻𝑈) 

           = 𝑂(lg𝑛/lg𝑏 + lg𝑈/lg𝐻) = 𝑂(lg𝑛/lg𝑏 + 𝑏) 
 

• Set 𝑏 = (lg 𝑛) 𝑂(lg𝑛/lglg 𝑛) 
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Offline 2D Point Location Problem 

• Offline (or "batched") setting: 

 what if all 𝑛 query points are given in advance? 

   

• The applications to 2D Voronoi diagram, 3D convex 

hull, 2D line segment intersection, etc. only need the 

offline case 

 



Offline 2D Point Location Problem 

• Example:  1D predecessor search 

      online queries 𝑂( lg𝑛/lglg𝑛) or 𝑂(lg lg 𝑈)     

      offline queries       𝑂( lglg𝑛)  [Han&Thorup] 

                           (since offline predecessor search  sorting) 
 

• Our result in 2D: 

      online queries 𝑂(lg𝑛/lglg𝑛) or 𝑂( lg𝑈/lglg𝑈) 

      offline queries 2𝑂( lg lg 𝑛) 



New Key Recurrence 

𝑄 𝑛, 𝑈𝐿, 𝑈𝑅 
≤ 𝑄(𝑂(𝑏), 𝐻, 𝐻) + 

max 𝑄
𝑛

𝑏
, 𝑈𝐿, 𝑈𝑅 , 𝑄 𝑛,

𝑈𝐿

𝐻
,𝑈𝑅 , 𝑄 𝑛, 𝑈𝐿,

𝑈𝑅

𝐻
 

        +𝑂 ((lg 𝑈𝐿 + lg𝑈𝑅)/𝑤) 
 

 by packing multiple query points into a word 
 

 

 

  𝑄(𝑛, 𝑈, 𝑈) = 2𝑂( lg lg 𝑛) 



Remarks 

• Related (vague) question:  best word-RAM sorting 

alg'm that doesn't “rely on” hashing? 

 

• For 2D Voronoi diagrams specifically:  can do much 

better, in 𝑂 sort 𝑛 = 𝑂(𝑛 lglg𝑛) time  

[Buchin&Mulzer, FOCS'09] 

 

• Other word-RAM results in CG: 

–  dynamic 2D convex hull  [Demaine&P., SoCG'07] , … 
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2D Orthogonal Range Searching Problem 

• Preprocess 𝑛 points in 2D s.t. given a query (axis-

aligned) rectangle 𝑞, 

– report all points inside 𝑞  

– count # points inside 𝑞  

– decide if 𝑞 is empty of points 
 

 

 

• Textbook result: 𝑂(𝑛lg𝑛)space, 𝑂(lg𝑛) time      

                                        (range tree) 

 

q 



2D Orthogonal Range Counting 

• Best known result:  

       𝑂(𝑛)space, 𝑂(lg𝑛/lglg𝑛)time (optimal) 
 

• What if queries are offline? 
 

• Offline 2D range counting   dynamic 1D range 

counting (or “rank queries”):  𝑂(lg𝑛/lglg𝑛)time [Dietz’88] 

 

• Our result in 2D: 

      offline queries 𝑂( lg𝑛) time 



Our Technique:  

𝑂(𝑛 lg𝑛) Alg'm for Counting Inversions 

• Problem: Given a permutation 𝑎1, … , 𝑎𝑛of *1, … , 𝑛+, 
count # (𝑖, 𝑗)with 𝑖 < 𝑗 & 𝑎𝑖 > 𝑎𝑗 

 

      2   1   4   5   8   3  7   6 

 

 

• Standard homework exercise: 𝑂(𝑛lg𝑛)time  
 

• Inversion counting    2D range counting 

     by considering points (𝑖,𝑎𝑖) 

 



• Problem (slightly generalized): Given sequence 

𝑆 = 𝑎1, … , 𝑎𝑛 , where each element in 1,… , 𝑈  

appears 𝑛/𝑈 times, count # (𝑖, 𝑗)with 𝑖 < 𝑗 & 𝑎𝑖 > 𝑎𝑗 
 

• Idea: 𝐵-way divide&conquer 

Our Technique:  

𝑂(𝑛 lg𝑛) Alg'm for Counting Inversions 



• Problem (slightly generalized): Given sequence 

𝑆 = 𝑎1, … , 𝑎𝑛 , where each element in 1,… , 𝑈  

appears 𝑛/𝑈 times, count # (𝑖, 𝑗)with 𝑖 < 𝑗 & 𝑎𝑖 > 𝑎𝑗 
 

1. For each 𝑘 = 1,… , 𝐵,  

 recurse in the subsequence of 𝑆containing 

  all elements in * 𝑘 − 1
𝑈

𝐵
+ 1,… , 𝑘

𝑈

𝐵
+ 

2. Recurse in 𝑎1/(
𝑈

𝐵
) , … , 𝑎𝑛/(

𝑈

𝐵
)  

 

𝑇 𝑛, 𝑈 ≤ 𝐵𝑇
𝑛

𝐵
,
𝑈

𝐵
+ 𝑇 𝑛, 𝐵 + 𝑂 𝑛  

Our Technique:  

𝑂(𝑛 lg𝑛) Alg'm for Counting Inversions 



  𝑇 𝑛, 𝑈 ≤ 𝐵𝑇
𝑛

𝐵
,
𝑈

𝐵
+ 𝑇 𝑛, 𝐵 + 𝑂 𝑛  

• Example (𝐵 = 2):  𝑇 𝑛, 𝑈 ≤ 2𝑇
𝑛

2
,
𝑈

2
+ 𝑂 𝑛     

    𝑇 𝑛, 𝑈 = 𝑂 𝑛 lg𝑈  

 

• Hypothetical: if 𝑇(𝑛, 𝐵) = 𝑂(𝑛) for a larger 𝐵,  

   𝑇(𝑛, 𝑈) = 𝑂(𝑛 log𝐵 𝑈)... 

 

Our Technique:  

𝑂(𝑛 lg𝑛) Alg'm for Counting Inversions 



 

• Example (𝐵 = 2): 𝑇 𝑛, 𝑈 ≤ 2𝑇
𝑛

2
,
𝑈

2
+ 𝑂 𝑛(lg 𝑈)/𝑤  

      by word packing 

    𝑇 𝑛, 𝑈 = 𝑂 𝑛 lg𝑈 (lg 𝑈)/𝑤  

    𝑇 𝑛, 2 𝑤 = 𝑂(𝑛) 
 

• Now: set 𝐵 = 2 𝑤  

   𝑇 𝑛, 𝑈 = 𝑂 𝑛 log𝐵 𝑈 = 𝑂(𝑛lg𝑈/ 𝑤) 

        = 𝑂(𝑛 lg𝑈) 

 

Our Technique:  

𝑂(𝑛 lg𝑛) Alg'm for Counting Inversions 



Remarks 

• Online dynamic 1D rank queries: 

       𝑂(lg𝑛/lglg𝑛)query time, 

       𝑂( lg 𝑛 1/2+𝜀) update time 

       [Dietz'88 had 𝑂(lg𝑛/lglg𝑛)query & update] 

 

• Offline orthogonal range counting in d dims: 

       𝑂(𝑛 lg 𝑛 𝑑−2+1/𝑑) time 
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2D Orthogonal Range Reporting 

• Previous results – long story:   
– Lueker/Willard'78: 𝑂 𝑛 lg 𝑛 space,𝑂(lg𝑛 + 𝑘) time (range trees) 

– Chazelle [FOCS’85]: 

           𝑂(𝑛(lg𝑛)𝜀) space,𝑂 lg 𝑛 + 𝑘  time 

           𝑂 𝑛 lg lg 𝑛 space, 𝑂(lg𝑛 + 𝑘lglg𝑛)time 

           𝑂 𝑛  space,𝑂(lg 𝑛 + 𝑘(lg𝑛)𝜀) time 

– Overmars’88: 𝑂(𝑛lg𝑛) space, 𝑂 lg lg𝑈 + 𝑘  time 

– Alstrup&Brodal&Rauhe [FOCS’00]: 

          𝑂(𝑛(lg𝑛)𝜀) space,𝑂(lglg𝑈 + 𝑘)time 

           𝑂(𝑛lglg𝑛) space, 𝑂( lg lg𝑈 2 + 𝑘lglg𝑈) time 

– Nekrich’07: 𝑂(𝑛)space,𝑂(lg𝑈/lglg𝑈 + 𝑘(lg𝑈)𝜀) time 

• Our result: 

           𝑂(𝑛lglg𝑛) space, 𝑂 1 + 𝑘 lg lg 𝑈  time 

         𝑂 𝑛  space,𝑂 1 + 𝑘 lg𝑈 𝜀  time 

 

 



2D Orthogonal Range Emptiness (𝑘 = 0) 

• Previous results – short version: 

– Alstrup&Brodal&Rauhe [FOCS’00]: 

       𝑂 𝑛 lg 𝑛 𝜀  space, 𝑂(lglg𝑈)time   

       𝑂 𝑛 lg lg 𝑛  space,𝑂 lg lg 𝑈 2  time 

 

• Our result: 

       𝑂 𝑛 lg lg 𝑛  space,𝑂(lglg𝑈)time 

 

 



Mihai’s Approach 

• Idea: go back to standard range trees! 

 

 

 

 

 

 
 

• Range emptiness query  1D range min/max queries  

              + predecessor search at a node 

• Save space by using succinct data structures… 
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p4 
p2 

p1p2 p4p3 p5p6 p7p8 

p1 p2 p3 p4 p5 p6 
p8 p7 



Mihai’s Approach 

 

 

 

 

 

 

• Subproblem (“Ball Inheritance”):  encode range tree 

s.t. given any node 𝑣 & index 𝑖, can select 𝑖-th element 

of the list at 𝑣  

• Solution:  use known succinct “rank/select" data 

structures for strings...  

p4p3p1p2 

p4p7p5p6p8p3p1p2 

p7p5p6p8 

p1p2 p4p3 p5p6 p7p8 

p1 p2 p3 p4 p5 p6 
p8 p7 



Mihai’s Approach 

 

 

 

 

 

 

• Subproblem (“Ball Inheritance”):  encode range tree 

s.t. given any node 𝑣 & index 𝑖, can select 𝑖-th element 

of the list at 𝑣  

  𝑂 𝑛 lg lg 𝑛  space,𝑂(lglg𝑛)time   

p4p3p1p2 

p4p7p5p6p8p3p1p2 

p7p5p6p8 

p1p2 p4p3 p5p6 p7p8 

p1 p2 p3 p4 p5 p6 
p8 p7 



Mihai’s Approach 

• One final idea: for predecessor search on a list, there 

is a data structure (based on vEB tree+fusion tree) which 

uses sublinear space!  

   

• … provided there is an oracle that gives access to the  

𝑖-th smallest element of the list for any given 𝑖  

 

• Query time = 𝑂(lglg𝑈)+ time for 𝑂(1) oracle calls 

 



Remark 

• Nekrich&Navarro [SWAT’12]:  applies this approach to 

1D range successor & 2D sorted orthogonal range 

reporting 

 

• C.&Wilkinson [SODA'13]:  applies this approach to 2D 

output-sensitive orthogonal range counting & 

approximate orthogonal range counting… 



Open Problems 

• Prove lower bounds! 

– (online) 2D point location in Ω(lg𝑛/lglg𝑛)or 

Ω( lg𝑈/lglg𝑈)time?? 

– (online) dynamic 1D rank queries with polylog query 

time:Ω( lg𝑛) update time?? 

– 2D orthogonal range emptiness (or just ball 

inheritance) with lglg𝑛query time: 

Ω(𝑛lglg𝑛)space?? 

– 4D orthogonal range emptiness with 

𝑛polylog𝑛space:Ω(lg𝑛)or 𝑂(lg𝑛/lglg𝑛)query 

time?? 


