

Mihai’s Work in

Computational Geometry

Timothy Chan

School of CS

U of Waterloo

Talk Outline

1. Point Location [C.&P., FOCS'06]

2. Offline Point Location [C.&P., STOC'07]

3. Offline Orthogonal Range Counting [C.&P., SODA'10]

4. Orthogonal Range Reporting [C.&Larsen&P., SoCG'11]

Talk Outline

1. Point Location [C.&P., FOCS'06]

2. Offline Point Location [C.&P., STOC'07]

3. Offline Orthogonal Range Counting [C.&P., SODA'10]

4. Orthogonal Range Reporting [C.&Larsen&P., SoCG'11]

2D Point Location Problem

• Preprocess a planar subdivision

 with 𝑛 line segments s.t.

 given query point 𝑞,

 find which region contains 𝑞

q

2D Point Location Problem

• Preprocess a planar subdivision

 with 𝑛 line segments s.t.

 given query point 𝑞,

 find which region contains 𝑞

• Standard result in CG: 𝑂(𝑛) space, 𝑂(lg𝑛) query time

 [Dobkin&Lipton'76, Lee&Preparata'77, Lipton&Tarjan'77*,

 Kirkpatrick'83*, Preparata'83, Edelsbrunner&Guibas&Stolfi'86*,

 Cole'86, Sarnak&Tarjan'86*, Mulmuley'90*, ...]

q

2D Point Location Problem

• Applications:

– 2D nearest neighbor search in 𝑂(𝑛)space, 𝑂(lg𝑛)
time

– explains why many CG problems, e.g., 2D Voronoi

diagram, 3D convex hull, 2D line segment

intersection, etc., etc., etc. have 𝑂(𝑛lg𝑛)alg'ms

q

2D Point Location Problem

• The surprise:

– The problem can be solved in sublogarithmic time!

 ... in the word RAM (or “transdichotomous”) model

• Assumptions:

– RAM with word of size 𝑤

– input coordinates are integers in *0, … , 𝑈+

– 𝑤 ≥ lg𝑛and 𝑤 ≥ lg𝑈

– standard ops on 𝑤-bit integers (<, +, -, x, /,

bitwise-&, <<, >>) take unit time

2D Point Location Problem

• Example: 1D predecessor search

– 𝑂(𝑛) space, 𝑂(lg𝑛/lglg𝑛)time [fusion tree+Beame&Fich]

 or 𝑂(lglg𝑈)time [vEB tree]

• Our results in 2D:

– 𝑂(𝑛) space, 𝑂(lg𝑛/lglg𝑛)time

 or 𝑂(lg𝑈/lglg𝑈)time

– implies improved alg'ms for 2D Voronoi diagram,

3D convex hull, 2D line segment intersection, etc.

by known CG techniques

Key Subproblem: Point Location in a Slab

• Idea: 𝑏-ary search

q

Key Recurrence

𝑄 𝑛, 𝑈𝐿, 𝑈𝑅
≤ 𝑄0(𝑂(𝑏), 𝐻, 𝐻) +

max 𝑄
𝑛

𝑏
, 𝑈𝐿, 𝑈𝑅 , 𝑄 𝑛,

𝑈𝐿

𝐻
,𝑈𝑅 , 𝑄 𝑛, 𝑈𝐿,

𝑈𝑅

𝐻

 +𝑂(1)

• Base case: 𝑄0(𝑏, 𝐻, 𝐻) = 𝑂 1 if 𝑏lg𝐻 ≈ 𝑤

 by packing multiple input line segments into a word

 𝑄(𝑛, 𝑈, 𝑈) = 𝑂(log𝑏𝑛 + log𝐻𝑈)

 = 𝑂(lg𝑛/lg𝑏 + lg𝑈/lg𝐻) = 𝑂(lg𝑛/lg𝑏 + 𝑏)

• Set 𝑏 = (lg 𝑛) 𝑂(lg𝑛/lglg 𝑛)

Talk Outline

1. Point Location [C.&P., FOCS'06]

2. Offline Point Location [C.&P., STOC'07]

3. Offline Orthogonal Range Counting [C.&P., SODA'10]

4. Orthogonal Range Reporting [C.&Larsen&P., SoCG'11]

Offline 2D Point Location Problem

• Offline (or "batched") setting:

 what if all 𝑛 query points are given in advance?

• The applications to 2D Voronoi diagram, 3D convex

hull, 2D line segment intersection, etc. only need the

offline case

Offline 2D Point Location Problem

• Example: 1D predecessor search

 online queries 𝑂(lg𝑛/lglg𝑛) or 𝑂(lg lg 𝑈)

 offline queries 𝑂(lglg𝑛) [Han&Thorup]

 (since offline predecessor search sorting)

• Our result in 2D:

 online queries 𝑂(lg𝑛/lglg𝑛) or 𝑂(lg𝑈/lglg𝑈)

 offline queries 2𝑂(lg lg 𝑛)

New Key Recurrence

𝑄 𝑛, 𝑈𝐿, 𝑈𝑅
≤ 𝑄(𝑂(𝑏), 𝐻, 𝐻) +

max 𝑄
𝑛

𝑏
, 𝑈𝐿, 𝑈𝑅 , 𝑄 𝑛,

𝑈𝐿

𝐻
,𝑈𝑅 , 𝑄 𝑛, 𝑈𝐿,

𝑈𝑅

𝐻

 +𝑂 ((lg 𝑈𝐿 + lg𝑈𝑅)/𝑤)

 by packing multiple query points into a word

 𝑄(𝑛, 𝑈, 𝑈) = 2𝑂(lg lg 𝑛)

Remarks

• Related (vague) question: best word-RAM sorting

alg'm that doesn't “rely on” hashing?

• For 2D Voronoi diagrams specifically: can do much

better, in 𝑂 sort 𝑛 = 𝑂(𝑛 lglg𝑛) time

[Buchin&Mulzer, FOCS'09]

• Other word-RAM results in CG:

– dynamic 2D convex hull [Demaine&P., SoCG'07] , …

Talk Outline

1. Point Location [C.&P., FOCS'06]

2. Offline Point Location [C.&P., STOC'07]

3. Offline Orthogonal Range Counting [C.&P., SODA'10]

4. Orthogonal Range Reporting [C.&Larsen&P., SoCG'11]

2D Orthogonal Range Searching Problem

• Preprocess 𝑛 points in 2D s.t. given a query (axis-

aligned) rectangle 𝑞,

– report all points inside 𝑞

– count # points inside 𝑞

– decide if 𝑞 is empty of points

• Textbook result: 𝑂(𝑛lg𝑛)space, 𝑂(lg𝑛) time

 (range tree)

q

2D Orthogonal Range Counting

• Best known result:

 𝑂(𝑛)space, 𝑂(lg𝑛/lglg𝑛)time (optimal)

• What if queries are offline?

• Offline 2D range counting dynamic 1D range

counting (or “rank queries”): 𝑂(lg𝑛/lglg𝑛)time [Dietz’88]

• Our result in 2D:

 offline queries 𝑂(lg𝑛) time

Our Technique:

𝑂(𝑛 lg𝑛) Alg'm for Counting Inversions

• Problem: Given a permutation 𝑎1, … , 𝑎𝑛of *1, … , 𝑛+,
count # (𝑖, 𝑗)with 𝑖 < 𝑗 & 𝑎𝑖 > 𝑎𝑗

 2 1 4 5 8 3 7 6

• Standard homework exercise: 𝑂(𝑛lg𝑛)time

• Inversion counting 2D range counting

 by considering points (𝑖,𝑎𝑖)

• Problem (slightly generalized): Given sequence

𝑆 = 𝑎1, … , 𝑎𝑛 , where each element in 1,… , 𝑈

appears 𝑛/𝑈 times, count # (𝑖, 𝑗)with 𝑖 < 𝑗 & 𝑎𝑖 > 𝑎𝑗

• Idea: 𝐵-way divide&conquer

Our Technique:

𝑂(𝑛 lg𝑛) Alg'm for Counting Inversions

• Problem (slightly generalized): Given sequence

𝑆 = 𝑎1, … , 𝑎𝑛 , where each element in 1,… , 𝑈

appears 𝑛/𝑈 times, count # (𝑖, 𝑗)with 𝑖 < 𝑗 & 𝑎𝑖 > 𝑎𝑗

1. For each 𝑘 = 1,… , 𝐵,

 recurse in the subsequence of 𝑆containing

 all elements in * 𝑘 − 1
𝑈

𝐵
+ 1,… , 𝑘

𝑈

𝐵
+

2. Recurse in 𝑎1/(
𝑈

𝐵
) , … , 𝑎𝑛/(

𝑈

𝐵
)

𝑇 𝑛, 𝑈 ≤ 𝐵𝑇
𝑛

𝐵
,
𝑈

𝐵
+ 𝑇 𝑛, 𝐵 + 𝑂 𝑛

Our Technique:

𝑂(𝑛 lg𝑛) Alg'm for Counting Inversions

 𝑇 𝑛, 𝑈 ≤ 𝐵𝑇
𝑛

𝐵
,
𝑈

𝐵
+ 𝑇 𝑛, 𝐵 + 𝑂 𝑛

• Example (𝐵 = 2): 𝑇 𝑛, 𝑈 ≤ 2𝑇
𝑛

2
,
𝑈

2
+ 𝑂 𝑛

 𝑇 𝑛, 𝑈 = 𝑂 𝑛 lg𝑈

• Hypothetical: if 𝑇(𝑛, 𝐵) = 𝑂(𝑛) for a larger 𝐵,

 𝑇(𝑛, 𝑈) = 𝑂(𝑛 log𝐵 𝑈)...

Our Technique:

𝑂(𝑛 lg𝑛) Alg'm for Counting Inversions

• Example (𝐵 = 2): 𝑇 𝑛, 𝑈 ≤ 2𝑇
𝑛

2
,
𝑈

2
+ 𝑂 𝑛(lg 𝑈)/𝑤

 by word packing

 𝑇 𝑛, 𝑈 = 𝑂 𝑛 lg𝑈 (lg 𝑈)/𝑤

 𝑇 𝑛, 2 𝑤 = 𝑂(𝑛)

• Now: set 𝐵 = 2 𝑤

 𝑇 𝑛, 𝑈 = 𝑂 𝑛 log𝐵 𝑈 = 𝑂(𝑛lg𝑈/ 𝑤)

 = 𝑂(𝑛 lg𝑈)

Our Technique:

𝑂(𝑛 lg𝑛) Alg'm for Counting Inversions

Remarks

• Online dynamic 1D rank queries:

 𝑂(lg𝑛/lglg𝑛)query time,

 𝑂(lg 𝑛 1/2+𝜀) update time

 [Dietz'88 had 𝑂(lg𝑛/lglg𝑛)query & update]

• Offline orthogonal range counting in d dims:

 𝑂(𝑛 lg 𝑛 𝑑−2+1/𝑑) time

Talk Outline

1. Point Location [C.&P., FOCS'06]

2. Offline Point Location [C.&P., STOC'07]

3. Offline Orthogonal Range Counting [C.&P., SODA'10]

4. Orthogonal Range Reporting [C.&Larsen&P., SoCG'11]

2D Orthogonal Range Reporting

• Previous results – long story:
– Lueker/Willard'78: 𝑂 𝑛 lg 𝑛 space,𝑂(lg𝑛 + 𝑘) time (range trees)

– Chazelle [FOCS’85]:

 𝑂(𝑛(lg𝑛)𝜀) space,𝑂 lg 𝑛 + 𝑘 time

 𝑂 𝑛 lg lg 𝑛 space, 𝑂(lg𝑛 + 𝑘lglg𝑛)time

 𝑂 𝑛 space,𝑂(lg 𝑛 + 𝑘(lg𝑛)𝜀) time

– Overmars’88: 𝑂(𝑛lg𝑛) space, 𝑂 lg lg𝑈 + 𝑘 time

– Alstrup&Brodal&Rauhe [FOCS’00]:

 𝑂(𝑛(lg𝑛)𝜀) space,𝑂(lglg𝑈 + 𝑘)time

 𝑂(𝑛lglg𝑛) space, 𝑂(lg lg𝑈 2 + 𝑘lglg𝑈) time

– Nekrich’07: 𝑂(𝑛)space,𝑂(lg𝑈/lglg𝑈 + 𝑘(lg𝑈)𝜀) time

• Our result:

 𝑂(𝑛lglg𝑛) space, 𝑂 1 + 𝑘 lg lg 𝑈 time

 𝑂 𝑛 space,𝑂 1 + 𝑘 lg𝑈 𝜀 time

2D Orthogonal Range Emptiness (𝑘 = 0)

• Previous results – short version:

– Alstrup&Brodal&Rauhe [FOCS’00]:

 𝑂 𝑛 lg 𝑛 𝜀 space, 𝑂(lglg𝑈)time

 𝑂 𝑛 lg lg 𝑛 space,𝑂 lg lg 𝑈 2 time

• Our result:

 𝑂 𝑛 lg lg 𝑛 space,𝑂(lglg𝑈)time

Mihai’s Approach

• Idea: go back to standard range trees!

• Range emptiness query 1D range min/max queries

 + predecessor search at a node

• Save space by using succinct data structures…

p4p3p1p2

p4p7p5p6p8p3p1p2

p7p5p6p8

p3

p7

p5

p6

p8

p1

p4
p2

p1p2 p4p3 p5p6 p7p8

p1 p2 p3 p4 p5 p6
p8 p7

Mihai’s Approach

• Subproblem (“Ball Inheritance”): encode range tree

s.t. given any node 𝑣 & index 𝑖, can select 𝑖-th element

of the list at 𝑣

• Solution: use known succinct “rank/select" data

structures for strings...

p4p3p1p2

p4p7p5p6p8p3p1p2

p7p5p6p8

p1p2 p4p3 p5p6 p7p8

p1 p2 p3 p4 p5 p6
p8 p7

Mihai’s Approach

• Subproblem (“Ball Inheritance”): encode range tree

s.t. given any node 𝑣 & index 𝑖, can select 𝑖-th element

of the list at 𝑣

 𝑂 𝑛 lg lg 𝑛 space,𝑂(lglg𝑛)time

p4p3p1p2

p4p7p5p6p8p3p1p2

p7p5p6p8

p1p2 p4p3 p5p6 p7p8

p1 p2 p3 p4 p5 p6
p8 p7

Mihai’s Approach

• One final idea: for predecessor search on a list, there

is a data structure (based on vEB tree+fusion tree) which

uses sublinear space!

• … provided there is an oracle that gives access to the

𝑖-th smallest element of the list for any given 𝑖

• Query time = 𝑂(lglg𝑈)+ time for 𝑂(1) oracle calls

Remark

• Nekrich&Navarro [SWAT’12]: applies this approach to

1D range successor & 2D sorted orthogonal range

reporting

• C.&Wilkinson [SODA'13]: applies this approach to 2D

output-sensitive orthogonal range counting &

approximate orthogonal range counting…

Open Problems

• Prove lower bounds!

– (online) 2D point location in Ω(lg𝑛/lglg𝑛)or

Ω(lg𝑈/lglg𝑈)time??

– (online) dynamic 1D rank queries with polylog query

time:Ω(lg𝑛) update time??

– 2D orthogonal range emptiness (or just ball

inheritance) with lglg𝑛query time:

Ω(𝑛lglg𝑛)space??

– 4D orthogonal range emptiness with

𝑛polylog𝑛space:Ω(lg𝑛)or 𝑂(lg𝑛/lglg𝑛)query

time??

