Combinatorial Geometry & Approximation Algorithms

Timothy Chan U. of Waterloo

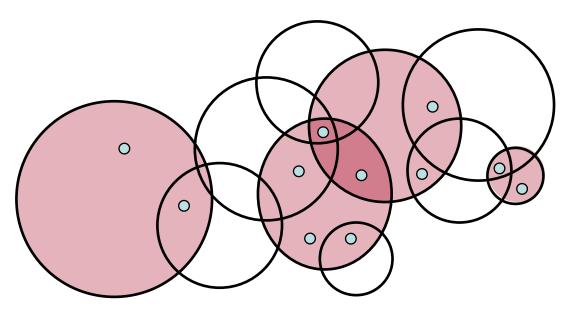
PROLOGUE

Analysis of Approx Factor in Analysis of Runtime in Computational Geometry

Combinatorial Geometry

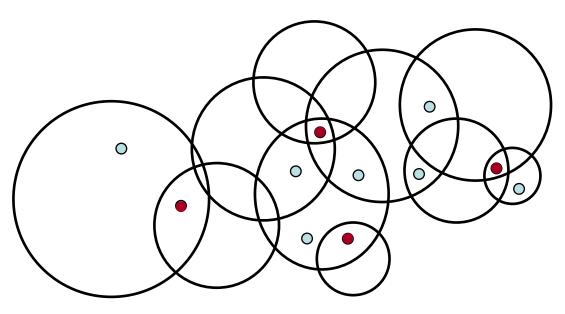
Problem 1: Geometric Set Cover

 Given m points P & n (weighted) objects S, find min(-weight) subset of objects that cover all points



Problem 1': Geometric Dual Set Cover (i.e. Hitting Set/Piercing)

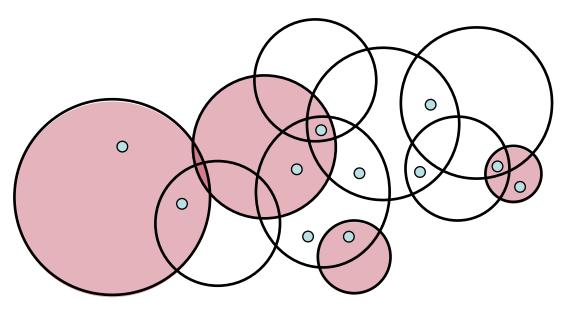
 Given *m* objects *S* & *n* (weighted) points *P*, find min(-weight) subset of points that hit all objects



[continuous case: *P* = entire space (unwt'ed)]

Problem 2: Geometric Indep Set (or Set Packing)

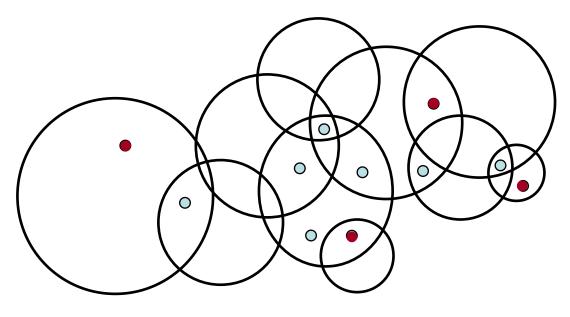
 Given *m* points *P* & *n* (weighted) objects *S*, find max(-weight) subset of objects
 s.t. no 2 chosen objects contain a common point



[continuous case: P = entire space]

Problem 2': Geometric Dual Indep Set

 Given *m* objects *S* & *n* (weighted) points *P*, find max(-weight) subset of points
 s.t. no 2 chosen points are in a common object



History 1: Approx Set Cover

•	General:		
	wt'ed	$\ln m$	(greedy/LP)
•	2D (pseud 3D halfspa		fat rectangles, 3D unit cubes,
	unwt'ed	0(1)	Brönnimann,Goodrich,SoCG'94 /
			Clarkson,Varadarajan,SoCG'05 <mark>(LP)</mark>
	wt'ed	$2^{O(\log^* n)}$	Varadarajan,STOC'10 <mark>(LP)</mark>
		0(1)	C.,Grant,Könemann,Sharpe,SODA'12 (LP)
•	2D disks, 3D halfspaces:		
	<i>.</i>		

unwt'ed PTAS Mustafa,Ray,SoCG'09 (local search)

History 2: Approx Set Cover

•	2D fat triangles:		
	unwt'ed	$O(\log \log n)$	Clarkson,Varadarajan,SoCG'05 (LP)
			Aronov,Ezra,Sharir,STOC'09 / Varadarajan,SoCG'09 <mark>(LP)</mark>
		$O(\log \log^* n)$	Aronov,de Berg,Ezra,Sharir,SODA'11 (LP)
	wt'ed	$2^{O(\log^* n)}$	Varadarajan,STOC'10 <mark>(LP)</mark>
		$O(\log \log^* n)$	C.,Grant,Könemann,Sharpe,SODA'12 (LP)

History 3: Approx Dual Set Cover

- Continuous case:
- dD unit balls, unit hypercubes: unwt'ed PTAS Hochbaum,Maass'85 (shifted grid+DP)
- dD balls, hypercubes, general fat objects: unwt'ed PTAS C.'03 (separator)
- 2D unit-height rectangles: unwt'ed PTAS C.,Mahmood'05 (shifted grid+DP)

History 4: Approx Dual Set Cover

Discrete case:

- 2D unit disks, 3D unit cubes, 3D halfspaces: unwt'ed 0(1) Brönnimann,Goodrich,SoCG'94 (LP) wt'ed 2^{0(log*n)} Varadarajan,STOC'10 (LP) 0(1) C.,Grant,Könemann,Sharpe,SODA'12 (LP)
- 2D (pseudo-)disks, 3D halfspaces: unwt'ed PTAS Mustafa,Ray,SoCG'09 (local search)
- 2D rectangles, 3D boxes:
 unwt'ed O(log log n) Aronov,Ezra,Sharir,STOC'09 (LP)

History 5: Approx Indep Set

- Continuous case:
- dD unit balls, unit hypercubes: wt'ed PTAS Hochbaum,Maass'85 (shifted grid+DP)
- 2D unit-height rectangles: wt'ed PTAS Agarwal,van Kreveld,Suri'97 (shifted grid+DP)
- dD balls, hypercubes, general fat objects: wt'ed PTAS Erlebach,Jansen,Seidel,SODA'01 / C.'03 (shifted quadtree+DP)
- 2D pseudo-disks: unwt'ed PTAS C.,Har-Peled,SoCG'09 (local search) wt'ed O(1) C.,Har-Peled,SoCG'09 (LP)

History 6: Approx Indep Set

- Continuous case:
- 2D rectangles:

wt'ed $\log n$ $\delta \log n$

 $O(\log n / \log \log n)$ unwt'ed $O(\log \log n)$ Agarwal, van Kreveld, Suri'97 (D&C)

Berman, DasGupta, Muthukrishnan, Ramaswami, SODA'01 (D&C+DP)

C.,Har-Peled,SoCG'09 (LP)

Chalermsook, Chuzhoy, SODA'09 (LP)

dD boxes:

wt'ed $O((\log n)^{d-2}/\log \log n)$ C.,Har-Peled,SoCG'09 (LP) unwt'ed $O(((\log n)^{d-1}\log \log n)$ Chalermsook,Chuzhoy,SODA'09 (LP)

• 2D line segments: unwt'ed $\tilde{O}(\sqrt{n})$

 $O(n^{\delta})$

Agarwal, Mustafa'04

Fox, Pach, SODA'11 (separator)

History 7: Approx Indep Set

Discrete case:

- 2D (pseudo-)disks, 2D fat rectangles: wt'ed
 0(1)
 C.,Har-Peled,SoCG'09 (LP)
- 2D disks, 3D halfspaces: unwt'ed PTAS Ene,Har-Peled,Raichel,SoCG'12 (local search)
- 2D fat triangles: wt'ed $O(\log^* n)$ C.,Har-Peled,SoCG'09 (LP)
 - dD boxes:

wt'ed $O(\log n)$ in 2D Ene,Har-Peled,Raichel,SoCG'12 (D&C) $O((\log n)^3)$ in 3D

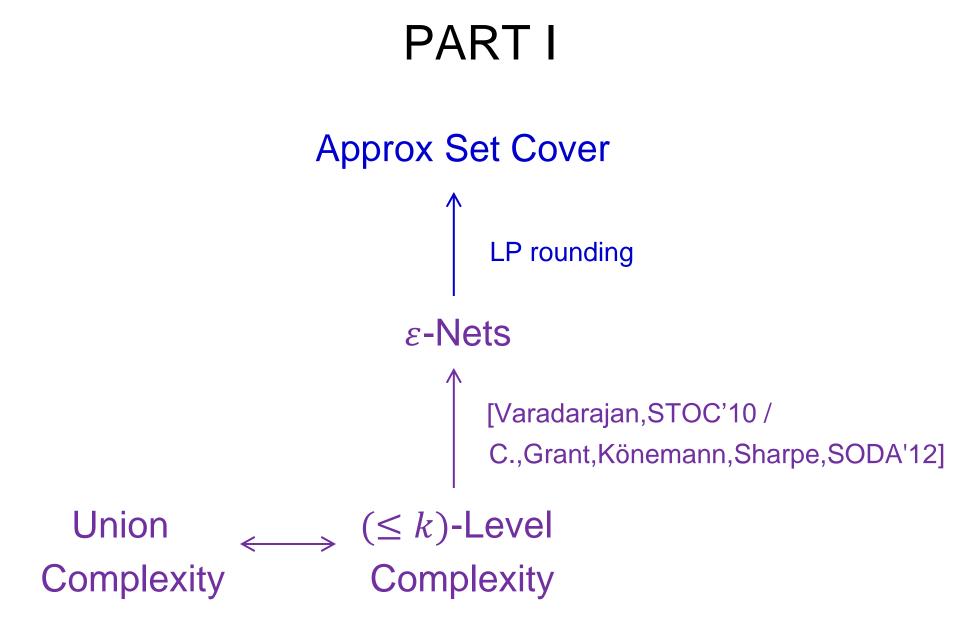
 $O(n^{1-0.632/(2^{2d-3}-0.368)})$ C.,SoCG'12 (LP)

History 8: Approx Dual Indep Set

- 2D (pseudo-)disks, 3D halfspaces: unwt'ed PTAS Ene,Har-Peled,Raichel,SoCG'12 (local search)
- dD boxes:

wt'ed

 $O(n^{0.368}) \text{ in 2D}$ C.,SoCG'12 (LP) $O(n^{1-0.632/2^{d-2}})$



Problem: *ε***-Nets**

p

- Given *n* (weighted) objects, an ε -net is a subset of objects that covers all points of level $\ge \varepsilon n$ where level of p = # objects containing p
- Prove that ∃ ε-net of small size (or weight) (as function of ε)

History: *ε*-Nets

- General: $O((1/\varepsilon) \log m)$
- Bounded VC dim: $O((1/\varepsilon) \log(1/\varepsilon))$

Vapnik,Chervonenkis'71 / Haussler,Welzl,SoCG'86

 $O(W/n \cdot (1/\varepsilon) \log(1/\varepsilon))$

 2D (pseudo-)disks, 2D fat rectangles, 3D unit cubes, 3D halfspaces:

 $O(1/\varepsilon)$ Matousek,Seidel,Welzl,SoCG'90 /
Clarkson,Varadarajan,SoCG'05 /
Pyrga,Ray,SoCG'08 $O(W/n \cdot (1/\varepsilon)2^{O(\log*(1/\varepsilon))})$ Varadarajan,STOC'10 $O(W/n \cdot (1/\varepsilon))$ C.,Grant,Könemann,Sharpe,SODA'12

History: *ε*-Nets

2D fat triangles: $O((1/\varepsilon) \log \log(1/\varepsilon))$ Clarkson, Varadarajan, SoCG'05 $O((1/\varepsilon) \log \log \log \log (1/\varepsilon))$ Aronov, Ezra, Sharir, STOC'09 / Varadarajan, SoCG'09 $O((1/\varepsilon) \log \log^* (1/\varepsilon))$ Aronov, de Berg, Ezra, Sharir, SODA'11 $O(W/n \cdot (1/\varepsilon)2^{O(\log*(1/\varepsilon))})$ Varadarajan, STOC'10 $O(W/n \cdot (1/\varepsilon) \log \log^* (1/\varepsilon))$ C., Grant, Könemann, Sharpe, SODA'12 2D dual rectangles, 3D dual boxes: $O((1/\varepsilon) \log \log(1/\varepsilon))$ Aronov, Ezra, Sharir, STOC'09

ε-Nets → Approx Set Cover [Brönnimann,Goodrich,SoCG'94 / Even,Rawitz,Shahar'05]

• Assume unwt'ed case & ε -net complexity $O((1/\varepsilon) f(1/\varepsilon))$

1. Solve LP: min $\sum_{\text{object } s} x_s$ s.t. $\sum_{s \text{ contains } p} x_s \ge 1 \quad \forall \text{ point } p$ $0 \le x_s \le 1$

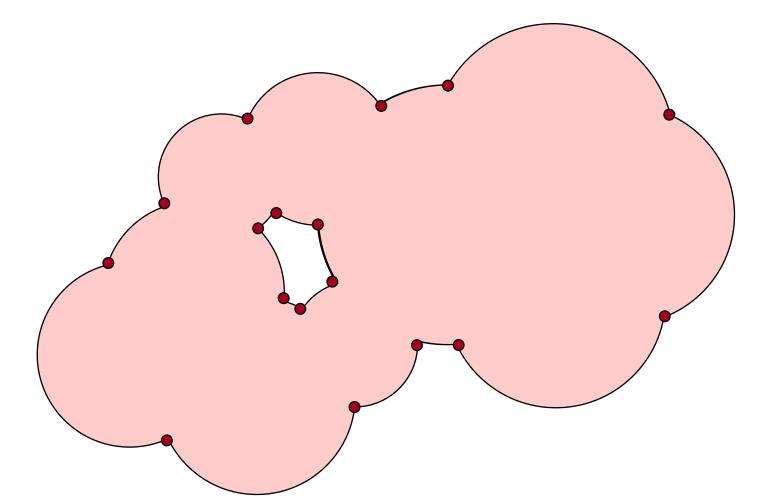
2. Let S' be multiset where each obj s is duplicated $[Mx_s]$ times

3. Return ε -net *R* of *S'*

- $|S'| \approx \sum_{s} M x_{s} = M \text{ OPT}_{LP}$
- $\forall p$, level of p in $S' \approx \sum_{s \text{ contains } p} M x_s \ge M$
- \Rightarrow can set $\varepsilon \approx 1/\text{OPT}_{\text{LP}}$
- $\Rightarrow |R| = 0(\mathsf{OPT}_{\mathsf{LP}}f(\mathsf{OPT}_{\mathsf{LP}})) \le 0(\mathsf{OPT}f(\mathsf{OPT}))$

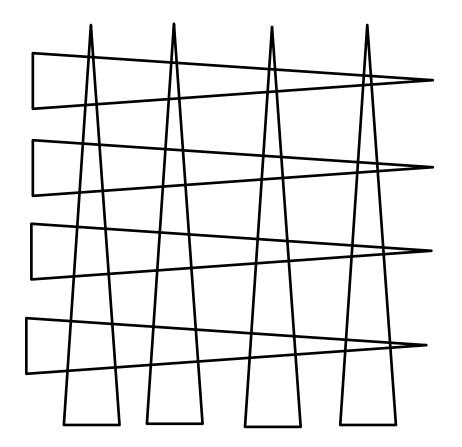
Problem: Union Complexity

 Given n objects, prove that boundary of the union has small # vertices (as function of n)



Problem: Union Complexity

 Given n objects, prove that boundary of the union has small # vertices (as function of n)



History: Union Complexity

• 3D halfspaces:

O(n) by planar graph

• 2D (pseudo-)disks, 2D fat rectangles:

O(n) Kedem,Livne,Pach,Sharir'86

• 3D unit cubes:

O(n)

Boissonnat,Sharir,Tagansky,Yvinec,SoCG'95

• 2D fat triangles:

 $O(n \log \log n)$ $O(n \log^* n)$

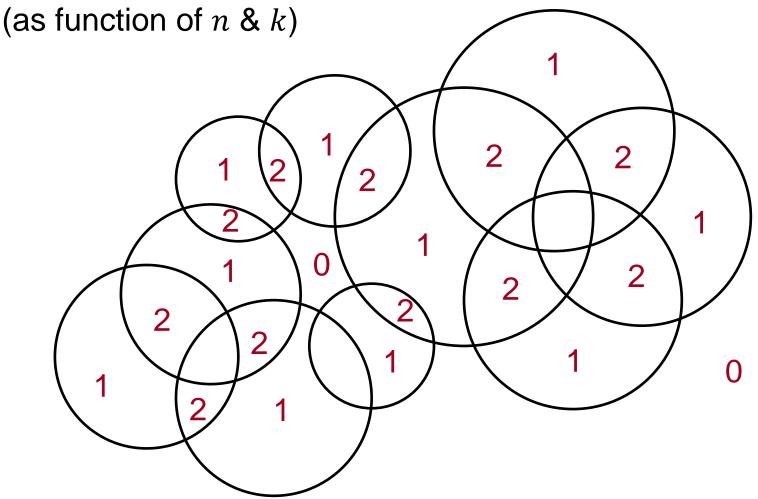
Matoušek, Pach, Sharir, Sifrony, Welzl, FOCS'91

Aronov, de Berg, Ezra, Sharir, SODA'11

• Etc., etc., etc.

Problem: $(\leq k)$ -Level Complexity

 Given n objects & given k, prove that the arrangement has small # vertices/cells of level ≤ k



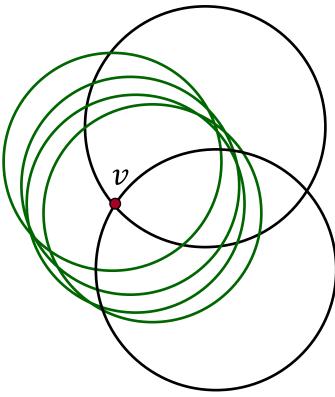
Union Complexity $\rightarrow (\leq k)$ -Level [Clarkson,Shor'88]

- Assume 2D & union complexity O(n f(n))
- Take random sample R where each obj is picked w. prob 1/k
- \forall vertex v of level $\leq k$,

Pr[v is on boundary of union of R] $\geq (1/k)^2 (1 - 1/k)^k = \Omega(1/k^2)$

 $O((n/k) f(n/k)) \ge$ E[# vertices on boundary of union of R] $\ge \Omega(1/k^2) \cdot [\# \text{ vertices of level } \le k]$

 \Rightarrow ($\leq k$)-level complexity O(nk f(n/k))



[Varadarajan,STOC'10 / C.,Grant,Könemann,Sharpe,SODA'12]

• Assume $(\leq k)$ -level complexity O(nk f(n/k)) with $f(\cdot) = O(1)$

Definition: A ρ -sample *R* of *S* is a subset where each object is picked w. prob ρ (independently)

Definition: A quasi- ρ -sample *R* of *S* is a subset s.t. \forall object *s*, $\Pr[s \in R] = O(\rho)$

(but events { $s \in R$ } may not be independent!)

[Varadarajan, STOC'10 / C., Grant, Könemann, Sharpe, SODA'12]

Lemma: Let R be $(1/2 + c\sqrt{(\log k)/k})$ -sample of S

Then p has level $\geq k$ in S

 \Rightarrow p has level $\geq k/2$ in R w. prob $1 - O(1/k^{102})$

Proof:

- $E[\text{level of } p \text{ in } R] \ge k \cdot (1/2 + c\sqrt{(\log k)/k})$
- Use Chernoff bound Q.E.D.

[Varadarajan,STOC'10 / C.,Grant,Könemann,Sharpe,SODA'12]

"Correction" Lemma: Let *R* be $(1/2 + c\sqrt{(\log k)/k})$ -sample of *S*

Then \exists quasi- $O(1/k^{100})$ -sample A of S s.t.

p has level $\geq k$ in S

 \Rightarrow p has level $\geq k/2$ in R or p is covered by A

Proof:

- # cells of level $\leq k$ is O(nk)
- Each such cell is contained in $\leq k$ objects
- \Rightarrow 3 "low-degree" object *s* that contains $O(k^2)$ cells of level $\leq k$
- Inductively handle $S \{s\}$
- If s contains a cell that has level k in S but level < k/2 in R, then add s to A
- $\Rightarrow \Pr[s \in A] \leq O(k^2 \cdot 1/k^{102}) \quad Q.E.D.$

[Varadarajan, STOC'10 / C., Grant, Könemann, Sharpe, SODA'12]

Corollary (after ℓ iterations): Let *R* be ($\approx 1/2^{\ell}$)-sample of *S* Then \exists quasi- ρ -sample *A* of *S* with

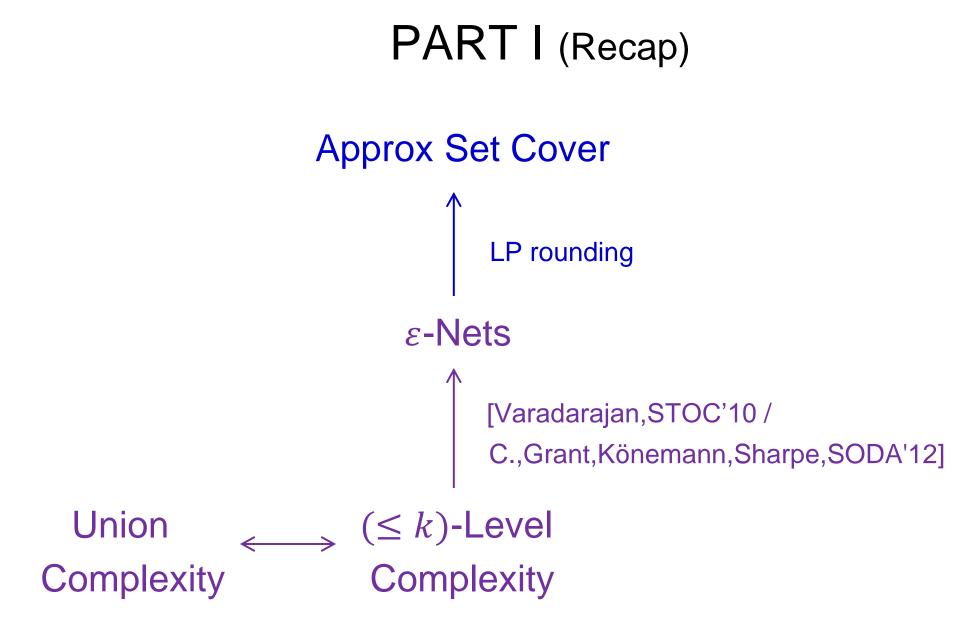
 $\rho \approx \sum_{i=0}^{\ell-1} 1/(k/2^i)^{100} \cdot 1/2^i$ s.t.

p has level $\geq k$ in S

 \Rightarrow p has level $\geq k/2^{\ell}$ in R or p is covered by A

- Set $k = \varepsilon n$, $\ell = \log k$, & return $R \cup A$
- $\Rightarrow \rho = O(1/k)$ by geometric series
- $\Rightarrow E[|R \cup A|] = O(n/k) = O(1/\varepsilon)$

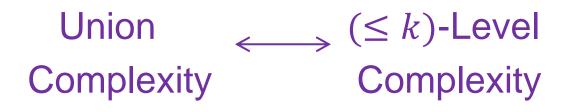
[in general, $O((1/\varepsilon) \log f(1/\varepsilon))$]



PART II

Approx Indep Set

LP rounding [C.,Har-Peled,SoCG'09]



• Assume unwt'ed, continuous case

1. Solve LP: max
$$\sum_{\text{object } s} y_s$$

s.t. $\sum_{s \text{ contains } p} y_s \leq 1 \quad \forall \text{ point } p$
 $0 \leq y_s \leq 1$

- 2. let *R* be random sample where object *s* is picked w. prob y_s
- 3. return indep set Q in intersect. graph of R by Turan's theorem

• Turan's Theorem: Any graph with *n* vertices & average degree *D* has indep set of size $\ge n/(D+1)$

- Assume $(\leq k)$ -level complexity O(nk f(n/k))
- Let S' be multiset where each object s is duplicated $[My_s]$ times
- $|S'| \approx \sum_{s} M y_{s} = M \text{ OPT}_{LP}$

 \Rightarrow

• $\forall p$, level of p in $S' \approx \sum_{s \text{ contains } p} M y_s \leq M$

 $\Sigma_{s,t}$ intersect $My_s My_t \approx$

vertices in arrangement of $S' = O(M \text{ OPT}_{LP} M f(\text{OPT}_{LP}))$

- Assume $(\leq k)$ -level complexity O(nk f(n/k))
- Let S' be multiset where each object s is duplicated $[My_s]$ times
- $|S'| \approx \sum_{s} M y_{s} = M \text{ OPT}_{LP}$

 \Rightarrow

• $\forall p$, level of p in $S' \approx \sum_{s \text{ contains } p} M y_s \leq M$

 $\Sigma_{s,t}$ intersect $My_s My_t \approx$

vertices in arrangement of $S' = O(M \text{ OPT}_{LP} M f(\text{OPT}_{LP}))$

• Assume unwt'ed, continuous case

I. Solve LP: max
$$\sum_{\text{object } s} y_s$$

s.t. $\sum_{s \text{ contains } p} y_s \le 1 \quad \forall \text{ point } p$
 $0 \le y_s \le 1$

2. let *R* be random sample where object *s* is picked w. prob y_s

3. return indep set Q in intersect. graph of R by Turan's theorem

- $E[|R|] = \sum_{s} y_{s} = OPT_{LP}$
- $E[\# \text{ intersect. pairs of } R] = \sum_{s,t \text{ intersect }} y_s y_t$

$$= 0(\mathsf{OPT}_{\mathsf{LP}}f(\mathsf{OPT}_{\mathsf{LP}}))$$

 \Rightarrow average degree in intersect. graph of *R* is $O(f(OPT_{LP}))$

 $\Rightarrow E[|Q|] \ge \Omega(\mathsf{OPT}_{\mathsf{LP}} / f(\mathsf{OPT}_{\mathsf{LP}})) \ge \Omega(\mathsf{OPT} / f(\mathsf{OPT}))$

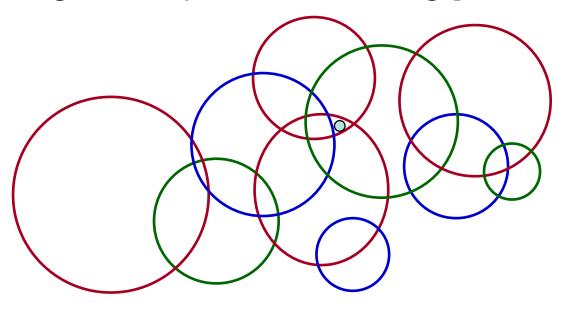
PART II (Alternate)

Approx Indep Set

Problem: Conflict-Free (CF) Coloring

 Given n objects, prove that we can color them with small # colors (as function of n) s.t.

 \forall point *p* of level \geq 1, there is a unique color among the objects containing *p*



History: CF Coloring

- 2D (pseudo-)disks, 3D halfspaces:
 0(log n) Even,Lotker,Ron,Smorodinsky,FOCS'02 / Har-Peled,Smorodinsky,SoCG'03
- 2D fat triangles:

 $O(\log n \, \log^* n)$

Aronov, de Berg, Ezra, Sharir, SODA'11

• 2D rectangles: $O((\log n)^2)$ Har-Peled,

Har-Peled, Smorodinsky, SoCG'03

History: CF Coloring

- 2D dual rectangles: $O(\sqrt{n})$ $O(\sqrt{n}/\log n)$ $O(n^{0.382})$
 - $O(n^{0.368})$
- dD dual boxes:
 - $O(n^{1-0.632/2^{d-2}})$ C., SoCG'12
- dD boxes:

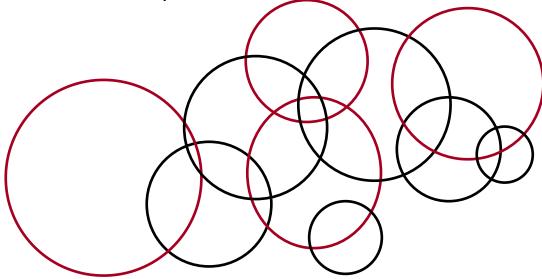
 $O(n^{1-0.632/(2^{2d-3}-0.368)})$ C.,SoCG'12

- Har-Peled, Smorodinsky, SoCG'03
- Pach, Tardos/Alon/...'03
- Ajwani, Elbassioni, Govindarajan, Ray'07
- C., SoCG'12

Problem: Indep Set in Delaunay Graph

order-k

- Given *n* objects, the Delaunay graph (DG) has an edge between objects *s*, *t* iff \exists point *p* that is in both *s*, *t* & has level $2 \le k$
- Prove that ∃ indep set in DG of large size (as function of n)



CF Coloring ↔ Indep Set in DG [Even,Lotker,Ron,Smorodinsky,FOCS'02 / Har-Peled,Smorodinsky,SoCG'03]

 (\rightarrow) Assume CF coloring with O(f(n)) colors

 \Rightarrow largest color class is an indep set in DG of size $\Omega(n/f(n))$

(\leftarrow) Assume indep set in DG of size $\Omega(n/f(n))$ Make it a new color class, remove, repeat \Rightarrow CF coloring with $\tilde{O}(f(n))$ colors [under certain conditions]

Indep Set in DG → Approx Indep Set [C.,SoCG'12]

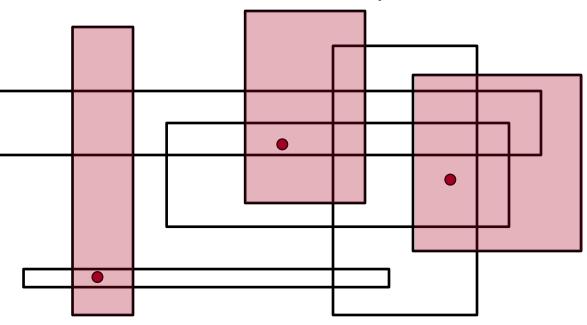
- Assume unwt'ed case & indep set size $\Omega(n/f(n))$ in DG
- Solve LP: max ∑_{object s} y_s
 s.t. ∑_{s contains p} y_s ≤ 1 ∀ point p
 0 ≤ y_s ≤ 1
 let *R* be random sample where object *s* is picked w. prob y_s
 return indep set *Q* in order-*k* DG of *R*
- $\forall p, E[\text{level of } p \text{ in } R] = \sum_{s \text{ contains } p} y_s \le 1$ $\Rightarrow \text{ can set } k \approx \log n$
- $E[|R|] = \sum_{s} y_{s} = OPT_{LP}$ \Rightarrow w.h.p., $|Q| \ge \widetilde{\Omega} (OPT_{LP} / f(OPT_{LP})) \ge \widetilde{\Omega} (OPT / f(OPT))$

EPILOGUE

Computational Geometry

Combinatorial Geometry

- Given n (unwt'ed) rectangles in 2D,
 let OPT_{hit} = min # points that hit all rectangles
 OPT_{indep} = max # disjoint rectangles
- Prove that OPT_{hit} / OPT_{indep} is small (as function of n)



Example

Theorem: $OPT_{hit} / OPT_{indep} \le O((\log \log n)^2)$ Proof:

• Aronov, Ezra, Sharir, STOC'09 \Rightarrow OPT_{hit} $\leq O(\log \log n)$ OPT_{LP}:

 $\begin{array}{ll} \min & \sum_{\text{point } p} x_p \\ \text{s.t.} & \sum_{p \text{ in } s} x_p \geq 1 \quad \forall \text{ rectangle } s \\ & 0 \leq x_p \leq 1 \end{array}$

• Chalermsook, Chuzhoy, SODA'09 \Rightarrow OPT_{indep} \geq OPT_{LP} / $O(\log \log n)$:

$$\max \sum_{s} \sum_$$

s.t.
$$\sum_{s \text{ contains } p} y_s \leq 1 \quad \forall \text{ point } p$$

• But the 2 LPs are dual! Q.E.D.

THE END