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Combinatorial Geometry 



Problem 1: Geometric Set Cover 

• Given 𝑚 points 𝑃 & 𝑛 (weighted) objects 𝑆,   

 find min(-weight) subset of objects   

 that cover all points  

 



Problem 1’: Geometric Dual Set Cover 
(i.e. Hitting Set/Piercing) 

• Given 𝑚 objects 𝑆 & 𝑛 (weighted) points 𝑃,   

 find min(-weight) subset of points    

 that hit all objects  

 

 

 

 

 

 

   [continuous case: 𝑃 = entire space (unwt’ed)] 

 



Problem 2: Geometric Indep Set 
(or Set Packing) 

• Given 𝑚 points 𝑃 & 𝑛 (weighted) objects 𝑆,   

 find max(-weight) subset of objects   

 s.t. no 2 chosen objects contain a common point  

 

 

 

 

 

 

   [continuous case: 𝑃 = entire space] 

 



Problem 2’: Geometric Dual Indep Set 

• Given 𝑚 objects 𝑆 & 𝑛 (weighted) points 𝑃,   

 find max(-weight) subset of points   

 s.t. no 2 chosen points are in a common object  

 

 

 

 

 

 



History 1: Approx Set Cover 

• General:   

     wt'ed ln𝑚  (greedy/LP) 

• 2D (pseudo-)disks, 2D fat rectangles, 3D unit cubes,       

3D halfspaces: 

     unwt'ed  𝑂(1)  Brönnimann,Goodrich,SoCG'94 /  

    Clarkson,Varadarajan,SoCG'05 (LP) 

     wt'ed 2𝑂(log
∗
𝑛) Varadarajan,STOC’10 (LP) 

  𝑂(1)  C.,Grant,Könemann,Sharpe,SODA'12 (LP)   

• 2D disks, 3D halfspaces: 

     unwt'ed PTAS  Mustafa,Ray,SoCG'09 (local search) 

 



History 2: Approx Set Cover 

• 2D fat triangles: 

     unwt'ed 𝑂(loglog𝑛)    Clarkson,Varadarajan,SoCG'05 (LP) 

  𝑂 log log log 𝑛  Aronov,Ezra,Sharir,STOC'09 /  

       Varadarajan,SoCG'09 (LP) 

  𝑂(loglog∗ 𝑛)    Aronov,de Berg,Ezra,Sharir,SODA'11 (LP) 

     wt'ed 2𝑂(log
∗
𝑛)       Varadarajan,STOC’10 (LP) 

  𝑂(loglog∗ 𝑛)   C.,Grant,Könemann,Sharpe,SODA'12 (LP) 

 



History 3: Approx Dual Set Cover 

Continuous case: 

• dD unit balls, unit hypercubes: 

     unwt'ed PTAS  Hochbaum,Maass'85 (shifted grid+DP) 

• dD balls, hypercubes, general fat objects: 

     unwt'ed PTAS  C.'03 (separator) 

• 2D unit-height rectangles: 

     unwt'ed PTAS  C.,Mahmood'05 (shifted grid+DP) 

 



History 4: Approx Dual Set Cover 

Discrete case: 

• 2D unit disks, 3D unit cubes, 3D halfspaces: 

     unwt'ed  𝑂(1)  Brönnimann,Goodrich,SoCG'94 (LP) 

     wt'ed 2𝑂(log
∗
𝑛)  Varadarajan,STOC’10 (LP) 

  𝑂(1)  C.,Grant,Könemann,Sharpe,SODA'12 (LP) 

• 2D (pseudo-)disks, 3D halfspaces: 

     unwt'ed PTAS  Mustafa,Ray,SoCG'09 (local search) 

• 2D rectangles, 3D boxes: 

     unwt'ed 𝑂(loglog𝑛) Aronov,Ezra,Sharir,STOC'09 (LP) 

 



History 5: Approx Indep Set 

Continuous case: 

• dD unit balls, unit hypercubes: 

     wt'ed PTAS  Hochbaum,Maass'85 (shifted grid+DP) 

• 2D unit-height rectangles: 

     wt'ed PTAS  Agarwal,van Kreveld,Suri'97 (shifted grid+DP) 

• dD balls, hypercubes, general fat objects: 

     wt'ed   PTAS  Erlebach,Jansen,Seidel,SODA'01 / C.'03

    (shifted quadtree+DP) 

• 2D pseudo-disks: 

     unwt'ed PTAS  C.,Har-Peled,SoCG'09 (local search) 

     wt'ed O(1)  C.,Har-Peled,SoCG'09 (LP) 



History 6: Approx Indep Set 

Continuous case: 

• 2D rectangles: 

    wt'ed      log𝑛   Agarwal,van Kreveld,Suri'97 (D&C) 

        δlog𝑛      Berman,DasGupta,Muthukrishnan, 

     Ramaswami,SODA'01 (D&C+DP) 

        𝑂(log𝑛/loglog𝑛)  C.,Har-Peled,SoCG'09 (LP) 

    unwt'ed 𝑂(loglog𝑛)  Chalermsook,Chuzhoy,SODA'09 (LP) 

• dD boxes: 

    wt'ed     𝑂((log 𝑛)𝑑−2/loglog𝑛) C.,Har-Peled,SoCG'09 (LP) 

    unwt'ed 𝑂(((log 𝑛)𝑑−1loglog𝑛)  Chalermsook,Chuzhoy,SODA'09 (LP) 

• 2D line segments: 

    unwt'ed 𝑂 ( 𝑛)   Agarwal,Mustafa'04 

        𝑂(𝑛δ)   Fox,Pach,SODA'11 (separator) 

 



History 7: Approx Indep Set 

Discrete case: 

• 2D (pseudo-)disks, 2D fat rectangles: 

    wt'ed        𝑂(1)  C.,Har-Peled,SoCG'09 (LP)  

• 2D disks, 3D halfspaces: 

    unwt'ed    PTAS  Ene,Har-Peled,Raichel,SoCG'12 (local search) 

• 2D fat triangles: 

    wt'ed        𝑂(log∗ 𝑛) C.,Har-Peled,SoCG'09 (LP)  

• dD boxes: 

    wt'ed        𝑂(log𝑛)in 2D        Ene,Har-Peled,Raichel,SoCG'12 (D&C) 

          𝑂((log 𝑛)3)in 3D 

          𝑂(𝑛1−0.632 (22𝑑−3−0.368) ) C.,SoCG'12 (LP)  

 



History 8: Approx Dual Indep Set 

• 2D (pseudo-)disks, 3D halfspaces: 

    unwt'ed PTAS  Ene,Har-Peled,Raichel,SoCG'12 (local search) 

• dD boxes: 

    wt'ed 𝑂(𝑛0.368)in 2D C.,SoCG'12 (LP)  

   𝑂(𝑛1−0.632 2𝑑−2 ) 



PART I 

             Approx Set Cover 

      

     LP rounding 

 

     𝜀-Nets 
 

             [Varadarajan,STOC’10 /  

                 C.,Grant,Könemann,Sharpe,SODA'12] 
 

      Union        (≤ 𝑘)-Level 

   Complexity        Complexity 



Problem: 𝜀-Nets 

• Given 𝑛 (weighted) objects,    

 an 𝜀-net is a subset of objects that  

 covers all points of level ≥ 𝜀𝑛 

   where level of 𝑝 = # objects containing 𝑝 
 

• Prove that ∃ 𝜀-net of small size (or weight)   

 (as function of 𝜀) 

 

𝑝 



History: 𝜀-Nets 

• General:  

    𝑂((1/𝜀)log𝑚) 

• Bounded VC dim: 

    𝑂((1/𝜀)log(1/𝜀))  Vapnik,Chervonenkis'71 /  

     Haussler,Welzl,SoCG'86 

    𝑂(𝑊/𝑛 ∙ (1/𝜀)log(1/𝜀)) 

• 2D (pseudo-)disks, 2D fat rectangles, 3D unit cubes,               

3D halfspaces: 

    𝑂(1/𝜀)      Matousek,Seidel,Welzl,SoCG'90 / 

     Clarkson,Varadarajan,SoCG'05 /

     Pyrga,Ray,SoCG'08 

    𝑂(𝑊/𝑛 ∙ (1/𝜀)2𝑂(log∗(1 𝜀)) ) Varadarajan,STOC’10 

    𝑂(𝑊/𝑛 ∙ (1/𝜀))   C.,Grant,Könemann,Sharpe,SODA'12   

 



History: 𝜀-Nets 

• 2D fat triangles: 

    𝑂((1/𝜀)loglog(1/𝜀))  Clarkson,Varadarajan,SoCG'05 

    𝑂((1/𝜀)logloglog(1/𝜀))  Aronov,Ezra,Sharir,STOC'09 /  

     Varadarajan,SoCG'09 

    𝑂((1/𝜀)loglog∗ (1/𝜀))  Aronov,de Berg,Ezra,Sharir,SODA'11 

    𝑂(𝑊/𝑛 ∙ (1/𝜀)2𝑂(log∗(1 𝜀)) ) Varadarajan,STOC’10 

    𝑂(𝑊/𝑛 ∙  (1/𝜀)loglog∗ (1/𝜀)) C.,Grant,Könemann,Sharpe,SODA'12   

• 2D dual rectangles, 3D dual boxes: 

    𝑂((1/𝜀)loglog(1/𝜀))  Aronov,Ezra,Sharir,STOC'09 

 



𝜀-Nets  Approx Set Cover 
[Brönnimann,Goodrich,SoCG'94 / Even,Rawitz,Shahar'05] 

• Assume unwt'ed case & 𝜀-net complexity 𝑂((1/𝜀)𝑓(1/𝜀)) 
 

  1.  Solve LP:  min   𝑥𝑠object𝑠  

     s.t.   𝑥𝑠𝑠contains𝑝 ≥ 1  ∀ point 𝑝 

   0 ≤ 𝑥𝑠 ≤ 1 

  2.  Let 𝑆′ be multiset where each obj 𝑠 is duplicated 𝑀𝑥𝑠 times 

  3.  Return 𝜀-net 𝑅 of 𝑆′  
 

• 𝑆′ ≈  𝑀𝑥𝑠𝑠 = 𝑀OPTLP 

• ∀𝑝,  level of 𝑝 in 𝑆′  ≈ 𝑀𝑥𝑠𝑠contains𝑝  ≥ 𝑀 

  can set 𝜀 ≈ 1/OPTLP 

  |𝑅| = 𝑂(OPTLP
𝑓(OPTLP)) ≤ 𝑂(OPT𝑓(OPT)) 

 



Problem: Union Complexity  

• Given 𝑛 objects, prove that boundary of the union has 

small # vertices (as function of 𝑛) 

 



Problem: Union Complexity  

• Given 𝑛 objects, prove that boundary of the union has 

small # vertices (as function of 𝑛) 

 



History: Union Complexity 

• 3D halfspaces: 

    𝑂(𝑛)  by planar graph 

• 2D (pseudo-)disks, 2D fat rectangles: 

    𝑂(𝑛)  Kedem,Livne,Pach,Sharir'86 

• 3D unit cubes: 

    𝑂(𝑛)  Boissonnat,Sharir,Tagansky,Yvinec,SoCG'95 

• 2D fat triangles: 

    𝑂(𝑛loglog𝑛) Matoušek,Pach,Sharir,Sifrony,Welzl,FOCS'91 

    𝑂(𝑛log∗ 𝑛) Aronov,de Berg,Ezra,Sharir,SODA'11 

• Etc., etc., etc. 

 



Problem: (≤ 𝑘)-Level Complexity 

• Given 𝑛 objects & given 𝑘, prove that the arrangement 

has small # vertices/cells of level ≤ 𝑘   

 (as function of 𝑛 & 𝑘) 
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Union Complexity  (≤ 𝑘)-Level 
[Clarkson,Shor'88] 

• Assume 2D & union complexity 𝑂(𝑛𝑓(𝑛)) 

• Take random sample 𝑅 where each obj is picked w. prob 1/𝑘 

• ∀ vertex 𝑣 of level ≤ 𝑘, 

        Pr 𝑣is on boundary of union of 𝑅  

      ≥ 1 𝑘 2(1 − 1/𝑘)𝑘 = Ω(1/𝑘2) 

 

     𝑂((𝑛/𝑘)𝑓(𝑛/𝑘)) ≥ 

    𝐸[# vertices on boundary of union of𝑅- 

 ≥ Ω(1/𝑘2)  ∙ [# vertices of level ≤ 𝑘- 
 

  (≤ 𝑘)-level complexity 𝑂(𝑛𝑘𝑓(𝑛/𝑘)) 

 

𝑣 



(≤ 𝑘)-Level  𝜀-Nets  
[Varadarajan,STOC’10 / C.,Grant,Könemann,Sharpe,SODA'12] 

• Assume (≤ 𝑘)-level complexity 𝑂(𝑛𝑘𝑓(𝑛/𝑘))with 𝑓(∙) = 𝑂(1) 

 

Definition:  A 𝜌-sample 𝑅 of 𝑆 is a subset where  

 each object is picked w. prob 𝜌 (independently) 

 

Definition:  A quasi-𝜌-sample 𝑅 of 𝑆 is a subset s.t.   

 ∀ object 𝑠,  Pr,𝑠𝜖𝑅- = 𝑂(𝜌)      

 (but events *𝑠𝜖𝑅+may not be independent!) 

 



(≤ 𝑘)-Level  𝜀-Nets  
[Varadarajan,STOC’10 / C.,Grant,Könemann,Sharpe,SODA'12] 

Lemma:  Let 𝑅 be (1/2 + 𝑐 (log 𝑘) /𝑘)-sample of 𝑆 

 Then  𝑝 has level ≥ 𝑘 in 𝑆  

        𝑝 has level ≥ 𝑘/2in 𝑅   w. prob 1 − 𝑂(1/𝑘102) 

 

Proof:  

• 𝐸,level of 𝑝in𝑅- ≥ 𝑘 ∙ (1/2 + 𝑐 (log 𝑘) /𝑘) 

• Use Chernoff bound  Q.E.D. 

 



(≤ 𝑘)-Level  𝜀-Nets  
[Varadarajan,STOC’10 / C.,Grant,Könemann,Sharpe,SODA'12] 

“Correction” Lemma:  Let 𝑅 be (1/2 + 𝑐 (log 𝑘) /𝑘)-sample of 𝑆 

      Then ∃ quasi-𝑂(1/𝑘100)-sample 𝐴 of 𝑆 s.t. 

   𝑝 has level ≥ 𝑘 in 𝑆  

        𝑝 has level ≥ 𝑘/2in 𝑅  or  𝑝 is covered by 𝐴 

Proof:  

• # cells of level ≤ 𝑘 is 𝑂(𝑛𝑘) 

• Each such cell is contained in ≤ 𝑘objects 

   ∃“low-degree” object 𝑠 that contains 𝑂(𝑘2)cells of level ≤ 𝑘 

• Inductively handle 𝑆 − *𝑠+ 

• If 𝑠 contains a cell that has level 𝑘in 𝑆 but level < 𝑘/2in 𝑅,  

 then add 𝑠 to 𝐴 

   Pr,𝑠𝜖𝐴- ≤ 𝑂(𝑘2 ∙ 1/𝑘102) Q.E.D. 



(≤ 𝑘)-Level  𝜀-Nets  
[Varadarajan,STOC’10 / C.,Grant,Könemann,Sharpe,SODA'12] 

Corollary (after ℓ iterations):  Let 𝑅 be (≈ 1/2ℓ)-sample of 𝑆 

      Then ∃ quasi-𝜌-sample 𝐴 of 𝑆 with 

 𝜌 ≈  1/(𝑘/2𝑖)100ℓ−1
𝑖=0  ∙ 1/2𝑖 s.t. 

   𝑝 has level ≥ 𝑘 in 𝑆  

        𝑝 has level ≥ 𝑘/2ℓ in 𝑅  or  𝑝 is covered by 𝐴 

 

• Set 𝑘 = 𝜀𝑛,  ℓ = log𝑘,  & return 𝑅 ∪ 𝐴 

  𝜌 = 𝑂(1/𝑘)  by geometric series 

  𝐸,|𝑅 ∪ 𝐴|- = 𝑂(𝑛/𝑘) = 𝑂(1/𝜀) 
 

  [in general, 𝑂((1/𝜀)log𝑓(1/𝜀))- 



         PART I (Recap) 

             Approx Set Cover 

      

     LP rounding 

 

     𝜀-Nets 
 

             [Varadarajan,STOC’10 /  

                 C.,Grant,Könemann,Sharpe,SODA'12] 
 

      Union        (≤ 𝑘)-Level 

   Complexity        Complexity 



PART II 

     Approx Indep Set 

 

      

     LP rounding  

     [C.,Har-Peled,SoCG’09]  

 

 

 

      Union        (≤ 𝑘)-Level 

   Complexity        Complexity 



(≤ 𝑘)-Level  Approx Indep Set 
[C.,Har-Peled,SoCG'09] 

• Assume unwt'ed, continuous case 
 

  1.  Solve LP:  max   𝑦𝑠object𝑠  

     s.t.   𝑦𝑠𝑠contains𝑝 ≤ 1  ∀ point 𝑝 

   0 ≤ 𝑦𝑠 ≤ 1 

  2.  let 𝑅 be random sample where object 𝑠 is picked w. prob 𝑦𝑠 
  3.  return indep set 𝑄 in intersect. graph of 𝑅 by Turan's theorem 
 

 



(≤ 𝑘)-Level  Approx Indep Set 
[C.,Har-Peled,SoCG'09] 

 

 

• Turan's Theorem:  Any graph with 𝑛 vertices &   

average degree 𝐷 has indep set of size  ≥ 𝑛/(𝐷 + 1) 



(≤ 𝑘)-Level  Approx Indep Set 
[C.,Har-Peled,SoCG'09] 

• Assume (≤ 𝑘)-level complexity 𝑂(𝑛𝑘𝑓(𝑛/𝑘)) 

 

• Let 𝑆′ be multiset where each object 𝑠 is duplicated 𝑀𝑦𝑠 times 

• |𝑆′| ≈  𝑀𝑦𝑠𝑠 = 𝑀OPTLP 

• ∀𝑝,  level of 𝑝 in 𝑆′  ≈ 𝑀𝑦𝑠𝑠contains𝑝  ≤ 𝑀 

   

      𝑀𝑦𝑠𝑠,𝑡intersect 𝑀𝑦𝑡 ≈ 

     # vertices in arrangement of 𝑆′  = 𝑂(𝑀OPTLP
𝑀𝑓(OPTLP))  



(≤ 𝑘)-Level  Approx Indep Set 
[C.,Har-Peled,SoCG'09] 

• Assume (≤ 𝑘)-level complexity 𝑂(𝑛𝑘𝑓(𝑛/𝑘)) 

 

• Let 𝑆′ be multiset where each object 𝑠 is duplicated 𝑀𝑦𝑠 times 

• |𝑆′| ≈  𝑀𝑦𝑠𝑠 = 𝑀OPTLP 

• ∀𝑝,  level of 𝑝 in 𝑆′  ≈ 𝑀𝑦𝑠𝑠contains𝑝  ≤ 𝑀 

   

      𝑀𝑦𝑠𝑠,𝑡intersect 𝑀𝑦𝑡 ≈ 

     # vertices in arrangement of 𝑆′  = 𝑂(𝑀OPTLP
𝑀𝑓(OPTLP))  



(≤ 𝑘)-Level   Approx Indep Set 
[C.,Har-Peled,SoCG'09] 

• Assume unwt'ed, continuous case 
 

  1.  Solve LP:  max   𝑦𝑠object𝑠  

     s.t.   𝑦𝑠𝑠contains𝑝 ≤ 1  ∀ point 𝑝 

   0 ≤ 𝑦𝑠 ≤ 1 

  2.  let 𝑅 be random sample where object 𝑠 is picked w. prob 𝑦𝑠 
  3.  return indep set 𝑄 in intersect. graph of 𝑅 by Turan's theorem 
 

• 𝐸 𝑅 =  𝑦𝑠𝑠 = OPTLP 

• 𝐸[# intersect. pairs of 𝑅- =  𝑦𝑠𝑠,𝑡intersect 𝑦𝑡 

                      = 𝑂(OPTLP
𝑓(OPTLP)) 

  average degree in intersect. graph of 𝑅 is 𝑂(𝑓(OPTLP)) 

  𝐸 𝑄 ≥ Ω(OPTLP
/𝑓(OPTLP)) ≥ Ω(OPT/𝑓(OPT)) 

 



          PART II (Alternate) 

     Approx Indep Set 

  

 

     LP rounding  

     [C.,SoCG’12] 

 

 

 

   Conflict-Free  Indep Set in 

      Coloring        Delaunay Graphs 



Problem: Conflict-Free (CF) Coloring  

• Given 𝑛objects, prove that we can color them with 

small # colors (as function of 𝑛) s.t.  

 ∀ point 𝑝 of level ≥ 1, there is a unique color  

 among the objects containing 𝑝 

 



History: CF Coloring 

• 2D (pseudo-)disks, 3D halfspaces: 

    𝑂(log𝑛)  Even,Lotker,Ron,Smorodinsky,FOCS'02 / 

   Har-Peled,Smorodinsky,SoCG'03 

• 2D fat triangles: 

    𝑂(log 𝑛 log∗ 𝑛)  Aronov,de Berg,Ezra,Sharir,SODA'11 

• 2D rectangles: 

    𝑂((log 𝑛)2) Har-Peled,Smorodinsky,SoCG'03 

 



History: CF Coloring 

• 2D dual rectangles: 

     𝑂( 𝑛)   Har-Peled,Smorodinsky,SoCG'03 

     𝑂( 𝑛/ log 𝑛)  Pach,Tardos/Alon/...'03 

     𝑂(𝑛0.382)   Ajwani,Elbassioni,Govindarajan,Ray'07 

     𝑂(𝑛0.368)   C.,SoCG'12 

• dD dual boxes: 

     𝑂(𝑛1−0.632 2𝑑−2 )  C.,SoCG'12 

• dD boxes: 

     𝑂(𝑛1−0.632 (22𝑑−3−0.368) ) C.,SoCG'12 



Problem: Indep Set in Delaunay Graph 

• Given 𝑛 objects, the  Delaunay graph (DG) has an 

edge between objects 𝑠, 𝑡 iff ∃ point𝑝 that is in both   

𝑠, 𝑡 & has level 2  
 

• Prove that ∃indep set in DG of large size   

 (as function of 𝑛) 

order-𝑘 

≤ 𝑘 



CF Coloring  Indep Set in DG 
[Even,Lotker,Ron,Smorodinsky,FOCS'02 / 

Har-Peled,Smorodinsky,SoCG'03] 

() Assume CF coloring with 𝑂(𝑓(𝑛))colors 

         largest color class is an indep set in DG of size Ω(𝑛/𝑓(𝑛)) 

 

() Assume indep set in DG of size Ω(𝑛/𝑓(𝑛)) 

       Make it a new color class, remove, repeat 

         CF coloring with 𝑂 (𝑓(𝑛))colors  [under certain conditions] 



Indep Set in DG  Approx Indep Set 
[C.,SoCG'12] 

• Assume unwt'ed case & indep set size Ω(𝑛/𝑓(𝑛))in DG  
 

  1.  Solve LP:  max   𝑦𝑠object𝑠  

     s.t.   𝑦𝑠𝑠contains𝑝 ≤ 1  ∀ point 𝑝 

   0 ≤ 𝑦𝑠 ≤ 1 

  2.  let 𝑅 be random sample where object 𝑠 is picked w. prob 𝑦𝑠 
  3.  return indep set 𝑄 in order-𝑘 DG of 𝑅 
 

• ∀𝑝, 𝐸,level of 𝑝in𝑅- =  𝑦𝑠𝑠contains𝑝 ≤ 1 

      can set 𝑘 ≈ log𝑛 

• 𝐸 𝑅 =  𝑦𝑠𝑠 = OPTLP 

      w.h.p., 𝑄 ≥ Ω (OPTLP
/𝑓(OPTLP)) ≥ Ω (OPT/𝑓(OPT)) 



EPILOGUE 

 

  

   

Computational Geometry 

 

 

 

Combinatorial Geometry 



Example 
[Wegner’67] 

• Given 𝑛 (unwt’ed) rectangles in 2D, 

    let  OPThit    = min # points that hit all rectangles 

 OPTindep = max # disjoint rectangles 
  

• Prove that OPThit / OPTindep  is small (as function of n) 



Example 

Theorem:  OPThit / OPTindep ≤ 𝑂((loglog𝑛)2) 

Proof:  

• Aronov,Ezra,Sharir,STOC'09        OPThit
≤ 𝑂(loglog𝑛)OPTLP: 

             min   𝑥𝑝point𝑝  

   s.t.   𝑥𝑝𝑝in𝑠 ≥ 1  ∀ rectangle 𝑠 

  0 ≤ 𝑥𝑝 ≤ 1 

• Chalermsook,Chuzhoy,SODA'09   OPTindep ≥ OPTLP /𝑂(loglog𝑛): 

   max   𝑦𝑠rectangle𝑠  

   s.t.   𝑦𝑠𝑠contains𝑝 ≤ 1  ∀ point 𝑝 

  0 ≤ 𝑦𝑠 ≤ 1 

• But the 2 LPs are dual!   Q.E.D. 



THE END 


