Computational Geometry for Non-Geometers:

Recent Developments on Some Classical Problems

Timothy Chan School of CS U of Waterloo

4 Toy Problems

(exercises in divide-&-conquer/data structures...)

Problem 1: Inversion Counting

• Given permutation π of $\{1,...,n\}$, count # of pairs (i,j) with i < j & π (i) > π (j)

· Exercise: O(n log n) time

Problem 2: Maxima

- · Given point set S in 2D,
 - p=(x,y) dominates q=(x',y') if x > x' & y > y'

Problem 2: Maxima

- Given point set S in 2D,
 - p=(x,y) dominates q=(x',y') if x > x' & y > y'
 - q in S is maximal if no pt in S dominates q
 - find all maximal points in S

Exercise: O(n log n) time in 2D

[History: Kung, Luccio, Preparata'75, Gabow, Bentley, Tarjan'84]

Problem 3: Orthogonal Segment Intersection

 Given n horizontal/vertical line segments in 2D, report all intersections

Exercise: O(n log n + k) time (k = output size)
 [History: Bentley,Ottmann'79, Overmars'87,...]

Problem 4: Rectangle Enclosure

 Given n axis-aligned rectangles in 2D, report all pairs (r,s) where r encloses s

Exercise: O(n polylog n + k) time (k = output size)
 [History: Bentley, Wood'80, Vaishnavi, Wood'80,
 Lee, Preparata'82, Gupta, Janardan, Smid, Das Gupta'95]

Common Thread: Dominance Searching

 All 4 problems reduce to 2D/3D/4D (red-blue) dominance counting/existence/reporting...

[which in turn are examples of (offline) orthogonal range searching]

Problem 1: Inversion Counting

• Given permutation π of $\{1,...,n\}$, count # of pairs (i,j) with i < j & π (i) > π (j)

point $(j, -\pi(j))$ dominates point $(i, -\pi(i))$ in 2D

· Exercise: O(n log n) time

Problem 2: Maxima

- Given point set S in 2D,
 - p=(x,y) dominates q=(x',y') if x > x' & y > y'
 - q in S is maximal if no pt in S dominates q
 - find all maximal points in S

Exercise: O(n log n) time in 2D

[History: Kung, Luccio, Preparata'75, Gabow, Bentley, Tarjan'84]

Problem 3: Orthogonal Segment Intersection

 Given n horizontal/vertical line segments in 2D, report all intersections

Exercise: O(n log n + k) time (k = output size)
 [History: Bentley,Ottmann'79, Overmars'87,...]

Problem 4: Rectangle Enclosure

 Given n axis-aligned rectangles in 2D, report all pairs (r,s) where r encloses s

• Exercise: O(n polylog n + k) time (k = output size)

[History: Bentley, Wood'80, Vaishnavi, Wood'80, Lee, Preparata'82, Gupta, Janardan, Smid, Das Gupta'95]

The "Obvious" Divide-&-Conquer Alg'm

For (red-blue) dominance counting/existence/reporting

$$T(n) = 2 T(n/2) + O(n \log n) \Rightarrow O(n \log^2 n)$$

By pre-sorting:

$$T(n) = 2 T(n/2) + O(n) \Rightarrow O(n log n)$$

[+k for reporting]

The "Obvious" Divide-&-Conquer Alg'm

• In d-D: $T_d(n) = 2T_d(n/2) + T_{d-1}(n) + O(n)$ $\Rightarrow T_d(n) = O(n \log^{d-1} n)$ (d-1)-D
(d-1)-D

• Side Remark: sol'n not tight for nonconst d... $T_d(n) \le 2^{O(d)} n^{1+\epsilon}$

e.g., for
$$d \le \delta \log n$$
, $T_d(n) = O(n^{1+\epsilon})$

[Hint: change of var $m = c^d n$ $T'(m) \le 2 T'(m/2) + T'(m/c) + O(m)$]

Detour: Appl'n to All-Pair Shortest Paths

- Given real-weighted directed tripartite graph $(A \cup B \cup C, E)$, |A| = |C| = n, |B| = d, find shortest (length-2) path from every a in A to every c in C
- · Trivial sol'n: O(dn²) time
- Better sol'n: Fix b_0 in $B = \{b_1,...,b_d\}$. Find all shortest paths that use b_0 , i.e., find all a in A, c in C s.t. $\forall i=1,...,d$, $w(a,b_0) + w(b_0,c) < w(a,b_i) + w(b_i,c)$

i.e. $\langle w(a,b_i) - w(a,b_0) \rangle_i$ dominates $\langle w(b_0,c) - w(b_i,c) \rangle_i$ in d-D

Detour: Appl'n to APSP (Cont'd)

```
s.t. \forall i=1,...,d, w(a,b_0) + w(b_0,c) < w(a,b_i) + w(b_i,c)
```

- i.e. $\langle w(a,b_i) w(a,b_0) \rangle_i$ dominates $\langle w(b_0,c) w(b_i,c) \rangle_i$ in d-D
 - \Rightarrow for d = δ log n, time o(n²) + k
 - \Rightarrow total time for all b_0 : $O(n^2)$
 - \Rightarrow general APSP in $O(n^3 / log n)$ time [C., WADS'05]

[improved over ... Floyd-Warshall'59, Friedman'76, Takaoka'92, Dobosiewicz'90, Han'04, Takaoka'04,'05, Zwick'04]

· Current record: O(n³log³log n / log²n) [C.,stoc'07]

... Back to Dominance in Low-D...

- How to beat O(n log^{d-1} n)?
- Rest of Talk:
 - I. Faster Worst-Case Alg'ms
 - II. Beyond Worst-Case Alg'ms ("Instance Optimality")

Improvement 1 (Maxima/Dominance Existence)

0

0

- Assume pre-sorted input
- Solve 2D problem in O(n) time...
 by sweeping from right to left 。
 - \Rightarrow in d-D, $O(n \log^{d-2} n)$ time [Kung,Luccio,Preparata,JACM'75]

Improvement 2 (Maxima/Dominance Existence)

 Solve 3D problem faster by sweeping from right to left...
 & using data structures...

with van Emde Boas (vEB) trees, in O(n loglog n) time

 \Rightarrow in d-D, O(n log^{d-3} n loglog n) time [Gabow,Bentley,Tarjan,STOC'84]

Better? No progress since...

A New Result [C.,Larsen,Pătrașcu'11]

4D problem can be solved in O(n log n) time

 \Rightarrow in d-D, O(n log^{d-3} n) time

Theorem [Chazelle, FOCS'89]

 Given 2 convex polyhedra in 3D with n vertices, we can compute their intersection, or their convex hull, in O(n) time

[Proof: 26-page paper!]

Connection of Maxima to Convex Hull

- Assume coords are in {1,...,n} (by pre-sorting)
- Map p=(i,j) to $p^* = (3^i,3^j)$
- Map q=(a,b) to halfspace $q^{**} = \{ x/3^a + y/3^b \le 2 \}$
- p is dominated by q \Leftrightarrow i \(\alpha \) \(\alpha \) j \(\beta \) \(\phi \) lies in q**

- minimal points of P
 - ⇔ vertices of (lower-left) convex hull of P*
- dominance range searching in P
 - ⇒ halfspace range searching in P*

Aside: History of DSs for 3D Halfspace/Dominance Range Reporting

	space	query time
•••		
Aggarwal, Hansen, Leighton [STOC'90	o] n log n	log n + k
C. [FOC5'98], Ramos [SoCG'99]	n loglog n	log n + k
Makris,Tsakalidis'98	n	log n loglog n + k
Nekrich [SoCG'07]	n log n	log ³ log n + k
Afshani [ESA'08]	n	log²log n + k
Afshani,Chan [SODA'09]	n	log n + k
C. [SODA'11]	n	loglog n + k

A New 4D Dominance Existence Alg'm

- Divide-&-conquer $\Rightarrow T_4(n) = 2T_4(n/2) + T_3(n) + O(n)$
- To solve 3D red-blue dominance existence subproblem:
 not ∃ pair (p,q): p is dominated by q
 - \Leftrightarrow not $\exists p,q$: point p* lies in halfspace q**
 - \Leftrightarrow (convex hull A of) all p* lie in (intersection B of) complement of all q**
 - $\Leftrightarrow A \cap B = A$ O(n) time by Chazelle's alg'm!

... provided that convex polyhedra A & B are given

4D Alg'm (Cont'd)

 but can pre-compute all A's & B's by bottom-up merging...
 by Chazelle's alg'm again!

- pre-computation: $T(n) = 2T(n/2) + O(n) \Rightarrow O(n \log n)$
- rest: $T(n) = 2T(n/2) + O(n) \Rightarrow O(n \log n)$ YES!
- Rmk: more complicated alg'ms [C.,Larsen,Pătraşcu'11] to get
 O(n log n) for 4D maxima (Problem 2) &
 O(n log n + k) for 2D rectangle enclosure (Problem 4)

[need not Chazelle's alg'm, but Clarkson-Shor random sampling, shallow cuttings, higher-deg. range trees, + bit packing tricks, ... (yikes!)]

Rest of Talk:

- I. Faster Worst-Case Alg'ms
- II. Beyond Worst-Case Alg'ms

The 2D Maxima Problem, Revisited

- $\Omega(n \log n)$ worst-case lower bound under comparison/decision tree model, but...
- Output-sensitive alg'ms:
 - O(nh) is easy, where h = output size
 - Θ(n log h) [Kirkpatrick, Seidel, SoCG'85]
- "Average-case" alg'ms:
 - for uniformly distributed pts in a square,
 O(n) expected [Bentley, Clarkson, Levine, SODA'90; Golin'94;
 Clarkson, FOCS'94; ...]

"Easy" vs. "Hard" Input

New Result [Afshani, Barbay, C., FOCS'09]

• \exists alg'm for the 2D maxima problem that beats all other alg'ms on all point sets simultaneously!

an "instance-optimal" alg'm

Def'n of Instance Optimality (1st Attempt)

- Let $T_A(S)$ = time of alg'm A on input sequence S
- Let OPT(S) = min $T_A(S)$ over all alg'ms A
- A is instance-optimal if $\forall S$, $T_A(S) \leq O(1) \cdot OPT(S)$

... but not possible for 2D maxima! [for every input sequence S, there is an alg'm with runtime O(n) on S]

Our Def'n of "Instance Optimality"

average

- Let $T_A(S) = \max \text{ time of alg'm } A \text{ over all permutations of input set } S$
- Let $OPT(S) = min T_A(S)$ over all alg'ms A random-order
- A is instance-optimal in the order-oblivious setting if $\forall S$, $T_A(S) \leq O(1) \cdot OPT(S)$

[subsumes output-sensitive alg'ms, & all alg'ms that do not exploit input order, ...]

[& average-case alg'ms for all point distributions as well!]

Related Work on Instance Optimality

- Fagin, Lotem, Naor'03 [finding the top k elements under a monotone aggregate scoring function]
- Sleator, Tarjan'85's "dynamic optimality conjecture" for binary search trees
- Competitive analysis of on-line alg'ms
- Various adaptive alg'ms, e.g.,
 Demaine, Lopez-Ortiz, Munro'00 [set union/intersection],
 Baran, Demaine'04 [approx. distance from pt to black-box curve], ...

A Measure of Difficulty

- Given point set S of size n
- Consider a partition P of S into subsets S_i s.t. each subset Si can be enclosed in a rectangle R_i that is below staircase(S)
- Let $H(P) := \sum_i |S_i| \log (n/|S_i|)$ related to entropy

 $n + (h \log n)$ $H(P) \sim h \cdot (n/h) \log h = n \log h$

A Measure of Difficulty

- · Given point set S of size n
- Consider a partition P of S into subsets S_i s.t.
 each subset S_i can be enclosed in

 a rectangle R_i that is below staircase(S)
- Let $H(P) := \sum_{i} |S_{i}| \log (n/|S_{i}|)$
- · Define the difficulty of S to be

```
H(S) := min H(P) over all valid partitions P satisfying (*)
```

An Instance-Optimal 2D Maxima Alg'm

Maxima(5):

- 1. if $|S| \le 2$ then return ...
- 2. m = x-median
- 3. q = highest pt right of x=m
- 4. prune all pts dominated by q
- 5. Maxima({all pts left of q} \cup {q})
- 6. Maxima({all pts right of q} \cup {q})
- Rmk: this is not new same as Kirkpatrick, Seidel'85's output-sensitive alg'm!!

x=m

Analysis

At level k
 of recursion:

- Let P be any valid partition
- Let S_i be any subset of P, enclosed in rectangle R_i
- \Rightarrow # pts in S_i that survive level k \leq min $\{n/2^k, |S_i|\}$
- \Rightarrow total # pts that survive level k $\leq O(\sum_i \min\{n/2^k, |S_i|\})$

Analysis (Cont'd)

```
\Rightarrow total # pts that survive level k \leq O(\sum_i \min\{n/2^k, |S_i|\})
\Rightarrow runtime \leq O(\sum_{k}\sum_{i} \min\{n/2^{k}, |S_{i}|\})
                = O(\sum_{i} \sum_{k} \min \{n/2^{k}, |S_{i}|\})
                = O(\sum_{i} (|S_{i}| + ... + |S_{i}| + |S_{i}|/2 + |S_{i}|/4 + ...))
                               log(n/|S_i|) times
                = O(\sum_{i} |S_{i}| \log (n/|S_{i}|)) = O(H(P))
\Rightarrow runtime \leq O(min<sub>P</sub> H(P)) = O(H(S)) GOOD!
```

Lower Bound

- Standard Ω (n log n) proofs can't show instance-specific lower bounds...
- 2 $\Omega(H(S))$ Proofs [Afshani, Barbay, C.'09]
 - An encoding-based argument
 - An adversary-based argument

Lower Bound Proof

Build k-d tree
 cell at depth k
 contains n/2^k pts

i.e., depth of cell R = $log(n/|S \cap R|)$

- Make cell R a leaf if R is below staircase(S)
 - ⇒ leaf cells yield a valid partition P*
- · Adversary simulates alg'm on unknown input
- Maintain a cell R_p for each input pt p (initially, R_p = root)

Lower Bound Proof (Cont'd)

- When alg'm makes, say, x-comp. betw'n p & q: if depth(R_p) is odd then $R_p \leftarrow$ any child of R_p if depth(R_q) is odd then $R_q \leftarrow$ any child of R_q if x-median(R_p) < x-median(R_q) then $R_p \leftarrow \text{left child of } R_p \ \& \ R_q \leftarrow \text{right child of } R_q$ declare " < " else symmetric
- When R_p becomes a leaf, fix p to an unassigned pt in $S \cap R_p$ [Note: don't let more than $|S \cap R|$ points go into cell R...]
- \Rightarrow At the end, get a permutation of S

Lower Bound Proof (Cont'd)

- Let D = $\sum_{p \text{ in } S} depth(R_p)$
- Each comp. increases D by $O(1) \Rightarrow D \leq O(\# \text{ comps})$
- At the end, each R_p must be a leaf (otherwise staircase could change)
- $\Rightarrow \# \text{ comps } \ge \Omega(D) = \Omega(\sum_{\text{leaf R}} |S \cap R| \text{ depth(R)})$ $= \Omega(\sum_{\text{leaf R}} |S \cap R| \text{ log (n/|S \cap R|)})$ $= \Omega(H(P^*)) \ge \Omega(H(S)) \text{ Q.E.D.!}$

Other Instance-Optimal Results

- 3D/4D maxima: need a new alg'm this time, explicitly using k-d trees...
- 2D orthogonal segment intersection
- 2D red-blue rectangle enclosure
- & classical non-orthogonal problems too!
 [2D/3D convex hull, 2D point location, 2D/3D halfspace range reporting, ... under a multilinear decision tree model]

Conclusions

find more instance-optimal results?

worst-case complexity of Problems 1 & 3??

Problem 1: Inversion Counting

• Given permutation π of $\{1,...,n\}$, count # of pairs (i,j) with i < j & π (i) > π (j)

Exercise: O(n log n) time

Current record: $O(n \log^{1/2} n)$ time [C.,Pătrașcu,SODA'10] Can you do better??

Problem 3: Orthogonal Segment Intersection

 Given n horizontal/vertical line segments in 2D, report all intersections

For prise or team page not (k) 1 times (k = ky) by vite frees [Bustis possible dermans 187,...]

The End