The Art of Shaving Logs

Timothy Chan
U. of Waterloo

(from http://en.wikipedia.org/wiki/The_Art_of_Shaving)

nal Complexity

Wednesday, May 13, 2009

Shaving Logs with Unit Cost

A grad student asked me the following question about how to measure running times.
A paper in POPL o8 claims to have broken the long-standing n^{3} barrier on a problem in programming languages, bringing it down to $\mathrm{n}^{3} / \log \mathrm{n}$. The algorithm has a lot of details, but the main pillar it stands on is the so-called 'fast set' data structure.

This data structure is used to represent sets as bitmaps of its elements (so a set $\{1,2\}$ over the domain o-7 is represented as o1100000), and supports three operations, where one is important for my question: set difference. Set difference can be performed by going through the bits of each set. Here's the
(from http://blog.computationalcomplexity.org/2009/05/shaving-logs-with-unit-cost.html)

Theme

$O\left(n^{a}\right) \rightarrow O\left(n^{a} / \log ^{b} n\right)$

Examples

- Boolean matrix multiplication in $O\left(n^{3} / \log ^{2} n\right)$ time [Arlazarov,Dinic,Kronrod,Faradzev'70 - the "4 Russians"]
- All-pairs shortest paths of real-weighted graphs \& minplus matrix multiplication in $O\left(n^{3} \log ^{3} \log n / \log ^{2} n\right)$ time [Fredman,FOCS'75, ..., C.,WADS'05, ..., C.,STOC'07]
- LCS \& edit distance for bounded alphabet in $O\left(n^{2} / \log n\right)$ time [Masek,Paterson'80]
- Maximum unweighted bipartite matching in $O\left(n^{5 / 2} / \log n\right)$ time [Alt,Blum,Mehlhorn,Paul'91,Feder,Motwani,STOC'91]
- Regular expression matching in $O(n P / \log n)$ time [Myer'92]
- 3SUM in $O\left(n^{2} \log ^{2} \log n / \log ^{2} n\right)$ time [Baran,Demaine, Pătraşcu,WADS'05]
- Transitive closure for sparse graphs in $O(m n / \log n)$ time
- All-pairs shortest paths for sparse unweighted undirected graphs in $O(m n / \log n)$ time (for $m>n \log n$) [C.,SODA'O6]

Examples (Cont'd)

- Min-plus convolution in $O\left(n^{2} \log ^{3} \log n / \log ^{2} n\right)$ time [Bremner,C.,Demaine,Erickson,Hurtado,Iacono,Langerman, Pătraşcu, Taslakian,ESA'06]
- CFL reachability in $O\left(n^{3} / \log ^{2} n\right)$ or $O(m n / \log n)$ [Chaudhuri'08]
- k-cliques in $O\left(n^{k} / \log ^{k-1} n\right)$ time [Vassilevska'09]
- Diameter of real-weighted planar graphs in $O\left(n^{2} \log { }^{4} \log n / \log n\right)$ time [Wulff-Nilsen'10]
- Discrete Fréchet distance decision in $O\left(n^{2} \log \log n / \log n\right)$ time [Agarwal,Avraham,Kaplan, Sharir,SODA'13]
- Continuous Fréchet distance decision in $O\left(n^{2} \log ^{2} \log n / \log n\right)$ time [Buchin,Buchin,Meulemans,Mulzer'12-"4 Soviets walk the dog"]
- Klee's measure problem in $O\left(n^{d / 2} \log { }^{O(1)} \log n / \log ^{d / 2-2} n\right)$ time [C.,FOCS'13]
- Etc. etc. etc.

PART 1:

Unweighted Problems

Example 1.1: Boolean Matrix Multiplication

Example 1.1: Boolean Matrix Multiplication First Alg'm

- $T(n) \leq\left(n / b_{1}\right)\left(n / b_{2}\right)\left(n / b_{3}\right)\left[T\left(b_{1}, b_{2}, b_{3}\right)+O\left(b_{1} b_{3}\right)\right]$

Example 1.1: Boolean Matrix Multiplication First Alg'm

- $T(n) \leq\left(n / b_{1}\right)\left(n / b_{2}\right)\left(n / b_{3}\right)\left[T\left(b_{1}, b_{2}, b_{3}\right)+O\left(b_{1} b_{3}\right)\right]$
- Notation: w = machine word size
- $T(1, w, 1)=O(1)$
- by one word op (bitwise-\&)

$$
\square \square=\square
$$

$$
\Rightarrow T(n)=O(n \cdot(n / w) \cdot n) \leq O\left(n^{3} / \log n\right)
$$

Standard RAM Model

- $w \geq \log n$ (pointers/indices fit in a word)
- Unit cost for standard (arithmetic, bitwise-logical, shift) ops on words

Example 1.1: Boolean Matrix Multiplication

Second Alg'm [Arlazarov, Dinic,Kronrod, Faradzev'70]:

"4 Russians"

- $T(n) \leq\left(n / b_{1}\right)\left(n / b_{2}\right)\left(n / b_{3}\right)\left[T\left(b_{1}, b_{2}, b_{3}\right)+O\left(b_{1} b_{3} / w\right)\right]$
- Notation: $w_{0}=\varepsilon \log n$
by word ops
(bitwise-or)
- $T\left(w_{0}, w_{0}, n\right)=O(n):$
- multiply A with all
 $2^{\text {wo }}$ possible column vectors in time $O\left(2^{w o} w_{0}{ }^{2}\right)=n^{O(\varepsilon)}$
- then do n table lookups

$$
\Rightarrow T(n)=O\left(\left(n / w_{0}\right) \cdot\left(n / w_{0}\right) \cdot 1 \cdot w_{0} n\right)=O\left(n^{3} / \log ^{2} n\right)
$$

Example 1.1: Boolean Matrix Multiplication Remarks

- For sparse matrices, $O(m n / \log n)$ time
- $O^{\star}\left(n^{3} / \log ^{9 / 4} n\right)$ time [Bansal,Williams,FOCS'09]
- Of course, $O\left(n^{2.38}\right)$ is still better (theoretically)

Are We Cheating?

- $w \geq \log n$ assumption is implicit in traditional alg' m analysis
- Basic principle of table lookup:
- avoid solving same subproblem again!
- Word ops on words of size $w_{0}=\varepsilon \log n$ can be simulated by table lookup
- Some alg'ms can even be re-implemented in pointer machine model

Example 1.2: Box Depth

- Given n boxes in $d \geq 3$ dimensions,
- find a point with max/min depth where $\operatorname{depth}(p)=\#$ of boxes containing p

Example 1.2: Box Depth Alg'm [C.,SoCG'08/FOCS'13]

- $T(n) \leq O(n / b)^{d / 2}\left[T(b)+O^{*}\left(b / w_{0}\right)\right]$
- by comp. geometry techniques...
- For $b=w_{0} / \log w_{0}, T(b)=O(1):$
- encode input in $O(b \log b)=O\left(w_{0}\right)$ bits
- precompute all answers in time $2^{O\left(w_{0}\right)}=n^{O(\varepsilon)}$
- then do table lookup
$\Rightarrow O^{\star}\left((n / \log n)^{d / 2} \log n\right)$
- Notation: O* hides loglog n factors

PART 2:

Integer-Valued Problems

Integer Word-RAM Model

- Input numbers are integers in $\{0, \ldots, U\}(U \geq n)$
- $w \geq \log U$ (input numbers fit in a word)
- Unit cost for standard ops on words

Example 2.1: 3SUM

- Given 3 sets of n numbers A, B, C,
- do there exist a in A, b in B, c in C with $a+b+c=0$?

Example 2.1: 3SUM Standard Alg'm

- Pre-sort A, B, C
- For each C in C :
- test whether $A+c$ and $-B$ have a common element by linear scan
$\Rightarrow O\left(n^{2}\right)$ time

Example 2.1: 3SUM
 An Alg'm by Baran,Demaine,Pătraşcu [WADS'05]

- Pre-sort A, B, C
- For each c in C :
- test whether $A+c$ and $-B$ have a common element by linear scan:
- hash, e.g., by taking mod random prime $p \sim w_{0}{ }^{100}$ (test for $a+b+c=0 \bmod p$)
\Rightarrow list has $O\left(n \log w_{0}\right)$ bits
\Rightarrow linear scan takes $O^{\star}\left(n / w_{0}\right)$ time
$\Rightarrow O^{\star}\left(n^{2} / \log n\right)$ time (randomized)

Example 2.1: 3SUM Remarks

- Generalizes to asymmetric version with $|C|=m \leq n$ in $O^{\star}(m n / \log n)$ time
- Another alg'm of Baran,Demaine,Pătraşcu in $O^{\star}\left(n^{2} / \log ^{2} n\right)$ time (randomized)
- Generalizes to $k S U M$ problem in $O^{*}\left(n^{(k+1) / 2} / \log n\right)$ time for odd k:
- reduces to asymmetric 3SUM with

$$
|A|=|B|=n^{(k-1) / 2},|C|=n
$$

Example 2.2: 3-Collinearity in 2D

- Given n points in 2D,
- do there exist 3 collinear points?

Example 2.2: 3-Collinearity in 2D

- Note: 3SUM reduces to 3-collinearity [Gajentaan,Overmars'95]

- Baran,Demaine,Pătraşcu asked: can 3-collinearity also be solved in $O\left(n^{2} /\right.$ polylog $\left.n\right)$ time for integer coords?

YES!

Example 2.2: 3-Collinearity in 2D Alg'm [C., unpublished' 06]

- $T(n) \leq O\left(r^{2}\right) T(n / r)+O(n r)$
- by $(1 / r)$-cuttings in the dual [Clarkson,Shor'89, Chazelle,Friedman'93]

Example 2.2: 3-Collinearity in 2D Alg'm [C.,unpublished'06]

- $T(n) \leq O(n / b)^{2} T(b)+O^{*}\left(n(n / b) / w_{0}\right)+O^{*}\left(n(n / b)^{2} / w_{0}{ }^{2}\right)$
- by $(1 / r)$-cuttings in the dual [Clarkson,Shor'89, Chazelle,Friedman'93]
- For $b=w_{0} / \log w_{0}, T(b)=O(1):$
- hash coordinates by taking mod random prime $p \approx w_{0}{ }^{100}$ (test for $\left(x_{2}-x_{1}\right)\left(y_{3}-y_{1}\right)=\left(y_{2}-y_{1}\right)\left(x_{3}-x_{1}\right) \bmod p$)
\Rightarrow encode input in $O\left(b \log w_{0}\right)=O\left(w_{0}\right)$ bits
- then do table lookup
$\Rightarrow T(n)=O^{\star}\left(n^{2} / \log ^{2} n\right)$ (randomized)

Example 2.2: 3-Collinearity in 2D

 Remarks- Generalizes to affine degeneracy testing in d dimensions in $O^{*}\left(n^{d} / \log ^{d} n\right)$ time
- But does not generalize to kSUM for larger k, or asymmetric 3SUM
- Open Question: other 3SUM-hard problems
- e.g., 3 points with min triangle area??

Example 2.3: Klee's Measure Problem

- Given n boxes in $d \geq 3$ dimensions,
- find volume of the union of the boxes

Example 2.3: Klee's Measure Problem

 Alg'm [C.,FOCS'13]- $T(n) \leq O(n / b)^{d / 2}[T(b)+O(b)]$
- For $b=w_{0} / \log \log U, T(b)=O(\log U / \log \log U)$:
- encode arrangement of boxes in $O(b \log b) \leq O\left(w_{0}\right)$ bits
- hash coords by taking mod different primes $p \approx \log U$ (e.g., in 3D, volume has the form $\Sigma \pm x_{i} y_{j} z_{k} \bmod p$) \Rightarrow encode coordinates in $O(b \log \log U)=O\left(w_{0}\right)$ bits
- \# different primes $=O(\log U / \log \log U)$
- reconstruct volume by Chinese remainder theorem!
$\Rightarrow T(n)=O^{\star}\left((n / \log n)^{d / 2} \log \psi\right)$
$\log ^{2} n$ assuming $n>w$
(by more ideas)

PART 3:

Real-Valued Problems

Real RAM Model

- Input numbers are reals
- Unit cost for standard arithmetic/comparison ops on reals, \& for $(\log n)$-bit pointers

Example 3.1: All-Pairs Shortest Paths \& Min-Plus Matrix Multiplication

- Given $n \times n$ matrices A, B,
- compute $c_{i j}=\min _{k}\left(a_{i k}+b_{k j}\right)$

Example 3.1: All-Pairs Shortest Paths

History

- Fredman [FOCS'75] $O\left(n^{3} \log ^{1 / 3} \log n / \log ^{1 / 3} n\right)$
- Takaoka'92
$O\left(n^{3} \log ^{1 / 2} \log n / \log ^{1 / 2} n\right)$
- Dobosiewicz'90
- Han'04
$O\left(n^{3} / \log ^{1 / 2} n\right)$
$O\left(n^{3} \log ^{5 / 7} \log n / \log ^{5 / 7} n\right)$
- Takaoka [COCOON'04] $O\left(n^{3} \log ^{2} \log n / \log n\right)$
- Zwick [ISAAC'04]
- Chan [WADS'05]
- Han [ESA'O6]
- Chan [STOC'07]
$O\left(n^{3} \log ^{1 / 2} \log n / \log n\right)$
$O\left(n^{3} / \log n\right)$
$O\left(n^{3} \log ^{5 / 4} \log n / \log ^{5 / 4} n\right)$
$O\left(n^{3} \log ^{3} \log n / \log ^{2} n\right)$
- Han,Takaoka [SWAT'12] $O\left(n^{3} \log \log n / \log ^{2} n\right)$

Example 3.1: All-Pairs Shortest Paths Decision Tree Complexity

(If We Only Count Comparisons...) [Fredman,FOCS'75]

- $T\left(n, n^{1 / 2}, n\right)=O\left(n^{2} \log n\right):$
- idea: $a_{i k}+b_{k j} \leq a_{i k^{\prime}}+b_{k^{\prime} j}$

$$
\Leftrightarrow a_{i k}-a_{i k^{\prime}} \leq b_{k^{\prime} j}-b_{k j}
$$

- n choices for $i, j, n^{1 / 2}$ choices for k, k^{\prime}
$\Rightarrow O\left(n^{2}\right)$ values for left/right-hand side
- sort all these values!
$\Rightarrow T(n)=O\left(n^{2.5} \log n\right)$

Example 3.1: All-Pairs Shortest Paths An Alg'm by Fredman [FOCS'75]

- $T(n) \leq\left(n / b_{1}\right)\left(n / b_{2}\right)\left(n / b_{3}\right)\left[T\left(b_{1}, b_{2}, b_{3}\right)+O\left(b_{1} b_{3}\right)\right]$
- For $b=w_{0}^{1 / 2}, T\left(b, b^{1 / 2}, b\right)=O\left(b^{2}\right)$:
- precompute decision tree in time $2^{O\left(b^{2}\right)}=n^{O(\varepsilon)}$

$$
\begin{aligned}
\Rightarrow T(n) & \leq O\left((n / b) \cdot\left(n / b^{1 / 2}\right) \cdot(n / b) \cdot b^{2}\right) \\
& =O\left(n^{3} / \log ^{1 / 4} n\right)
\end{aligned}
$$

Example 3.1: All-Pairs Shortest Paths Alg'm [C., STOC'07]

- $T(n) \leq\left(n / b_{1}\right)\left(n / b_{2}\right)\left(n / b_{3}\right)\left[T\left(b_{1}, b_{2}, b_{3}\right)+O\left(b_{1} b_{3}\right)\right]$
- For $b=w_{0} / \log w_{0}, T(n, b, n)=O^{*}\left(n^{2}\right)$:
- idea: view as b-dimensional geometric problem!
- map row i of A to point $p_{i}=\left(a_{i 1}, \ldots, a_{i b}\right)$
- map column j of B to $O\left(b^{2}\right)$ hyperplanes

$$
\begin{array}{r}
h_{j k k^{\prime}}=\left\{\left(x_{1}, \ldots, x_{b}\right) \mid x_{k}+b_{k j}=x_{k^{\prime}}+b_{k^{\prime} j}\right\} \\
A \square \square
\end{array}
$$

Example 3.1: All-Pairs Shortest Paths Alg'm [C., STOC'07]

- $T(n) \leq\left(n / b_{1}\right)\left(n / b_{2}\right)\left(n / b_{3}\right)\left[T\left(b_{1}, b_{2}, b_{3}\right)+O\left(b_{1} b_{3}\right)\right]$
- For $b=w_{0} / \log w_{0}, T(n, b, n)=O^{\star}\left(n^{2}\right)$:
- idea: view as b-dimensional geometric problem!
- map row i of A to point $p_{i}=\left(a_{i 1}, \ldots, a_{i b}\right)$
- map column j of B to $O\left(b^{2}\right)$ hyperplanes

$$
h_{j k k^{\prime}}=\left\{\left(x_{1}, \ldots, x_{b}\right) \mid x_{k}+b_{k j}=x_{k^{\prime}}+b_{k^{\prime} j}\right\}
$$

Example 3.1: All-Pairs Shortest Paths Alg'm [C., STOC'07]

- $T(n) \leq\left(n / b_{1}\right)\left(n / b_{2}\right)\left(n / b_{3}\right)\left[T\left(b_{1}, b_{2}, b_{3}\right)+O^{*}\left(b_{1} b_{3} / w_{0}\right)\right]$ tricky!
- For $b=w_{0} / \log w_{0}, T(n, b, n)=O^{*}\left(n^{2} / w_{0}\right)$:
- idea: view as b-dimensional geometric problem!
- map row i of A to point $p_{i}=\left(a_{i 1}, \ldots, a_{i b}\right)$
- map column j of B to $O\left(b^{2}\right)$ hyperplanes

$$
h_{j k k^{\prime}}=\left\{\left(x_{1}, \ldots, x_{b}\right) \mid x_{k}+b_{k j}=x_{k^{\prime}}+b_{k^{\prime} j}\right\}
$$

- want to classify each point against each hyperplane
- subquadratic time by comp. geometry techniques, which work well for dimensions b up to $\log n / \log \log n$
$\Rightarrow T(n) \leq O^{\star}\left((n / b) \cdot n^{2}\right)=O^{\star}\left(n^{3} / \log ^{2} n\right)$

Example 3.2: Exac† TSP

- Standard dynamic programming by Held,Karp'62:

$$
C[S, j]=\min _{k}\left(C[S-\{k\}, k]+a_{k j}\right) \quad \forall S \subset\{1, \ldots, n\}, j \notin S
$$

- This is basically min-plus matrix multiplication $T\left(2^{n}, n, n\right)$!

Example 3.2: Exact TSP

- E.g., use Fredman's approach
- For $b=\varepsilon n^{1 / 2}, T\left(b, b^{1 / 2}, b\right)=O\left(b^{2}\right)$:
- precompute decision tree in time $2^{O\left(b^{2}\right)} \ll 2^{n}$

$$
\begin{aligned}
\Rightarrow T\left(2^{n}, n, n\right) & \leq O\left(\left(2^{n} / b\right) \cdot\left(n / b^{1 / 2}\right) \cdot(n / b) \cdot b^{2}\right) \\
& =\frac{O\left(n{ }^{1.75} 2^{n}\right)}{n^{1.5}} \quad \text { instead of } O\left(n^{2} 2^{n}\right)
\end{aligned}
$$

SELUNG ON EBAY: O(1)

STILL WORKING

 ON YOUR ROUTE?
(from http://xkcd.com/399)

Example 3.2: Exact TSP Remarks

- But issues with the model... (need n-bit words !)
- Decision tree complexity for TSP known to $O\left(n^{8} \log n\right)$ (polynomial !) [Kolinek' 87 , Meyer auf der Heide' 84]

Example 3.3: Weighted Box Depth

- Given n weighted boxes in $\mathrm{d} \geq 3$ dimensions,
- find a point with max/min depth where $\operatorname{depth}(p)=$ sum of weights of boxes containing p

Example 3.3: Weighted Box Depth Decision Tree Complexity

- $T(n)=O\left(n^{5} \log n\right):$
- compute the arrangement of boxes by $O(n \log n)$ comparisons
- answer is max of $O\left(n^{d}\right)$ linear functions over the $O(n)$ weights
- idea: view as $O(n)$-dimensional geometric problem!
- D-dimensional point location for N hyperplanes in $O\left(D^{5} \log N\right)$ query time [Meiser'93, Meyer auf der Heide' 84]

Example 3.3: Weighted Box Depth Alg'm [C.,FOCS'13]

- $T(n) \leq O(n / b)^{d / 2}[T(b)+O(b)]$
- For $b=w_{0} / \log w_{0}, T(b)=O\left(b^{5} \log b\right)$:
- preprocess point location structure, which works well for dimensions b up to $\log n / \log \log n$
$\Rightarrow T(n)=O^{\star}\left((n / \log n)^{d / 2} \log ^{5} n\right)$

Final Open Questions

- KSUM for real numbers in $O\left(n^{(k+1) / 2} /\right.$ polylog $\left.n\right)$ time??
- decision tree complexity known to be $O\left(n^{4} \log n\right)$ [Meyer auf der Heide' 84]
- but no good divide\&conquer for $k>3$
- d-dimensional affine degeneracy testing for real numbers in $O\left(n^{d} /\right.$ polylog $\left.n\right)$ time??
- can do divide\&conquer
- but no good decision tree complexity bounds... yet
- Klee's measure problem for real numbers in $O\left(n^{d / 2} /\right.$ polylog $\left.n\right)$ time??
- Speedup beyond log factors?? Lower bounds??

